Loading…

Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity

Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of t...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2017-07, Vol.118, p.422-430
Main Authors: Lawrinenko, Michael, Jing, Dapeng, Banik, Chumki, Laird, David A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3
cites cdi_FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3
container_end_page 430
container_issue
container_start_page 422
container_title Carbon (New York)
container_volume 118
creator Lawrinenko, Michael
Jing, Dapeng
Banik, Chumki
Laird, David A.
description Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of the high point of zero net charge of metal oxyhydroxides. Here we report that pyrolysis temperature and the distribution of metal oxyhydroxides in biochars prepared by slow pyrolysis of biomass pre-treated with Al or Fe trichlorides strongly influenced biochar AEC. Biochars produced at 700 °C exhibit greater AEC than biochars similarly prepared at 500 °C. Spectroscopic (FTIR, XPS, and SEM-EDS) studies provided evidence for the formation of AlOC organometallic moieties on biochar surfaces that formed during pyrolysis. To a lesser extent, Fe also formed FeOC surface structures on biochar, but most Fe was present in discrete crystalline phases ranging from zerovalent iron to ferric oxides. These organometallic bonding structures are a means of supporting metal oxides on biochar carbon and are responsible for broader metal atom distributions, which can increase AEC through the development of metal oxyhydroxide surface coatings that exhibit high points of zero net charge. [Display omitted]
doi_str_mv 10.1016/j.carbon.2017.03.056
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917652448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000862231730297X</els_id><sourcerecordid>2000414321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4KXry05qttehGWxS9YEEHPYZqdakqbrkkr7n9vlnry4Gl4zO8N8x4hl4xmjLLips0M-HpwGaeszKjIaF4ckQVTpUiFqtgxWVBKVVpwLk7JWQhtlFIxuSAvq27qrZv6BNw2sX5wSW2HHkJIdh5HjzD26MbE9jswY0jmvfkAHw02KvyOwr1jYiASdtyfk5MGuoAXv3NJ3u7vXteP6eb54Wm92qRG5nRMDcicC2hqWUtVFBXFBjnwBkApWUNd1tio3PCyKgVluWo4LcscJNJKcmYasSTX892dHz4nDKPubTDYdeBwmILmh4xMCs4ievUHbYfJu_idZhUri5xLqSIlZ8r4IQSPjd5524Pfa0b1oWfd6rlnfehZU6Fjz9F2O9swhv2y6HUwFp3BrfVoRr0d7P8HfgARDYgx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917652448</pqid></control><display><type>article</type><title>Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity</title><source>Elsevier</source><creator>Lawrinenko, Michael ; Jing, Dapeng ; Banik, Chumki ; Laird, David A.</creator><creatorcontrib>Lawrinenko, Michael ; Jing, Dapeng ; Banik, Chumki ; Laird, David A.</creatorcontrib><description>Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of the high point of zero net charge of metal oxyhydroxides. Here we report that pyrolysis temperature and the distribution of metal oxyhydroxides in biochars prepared by slow pyrolysis of biomass pre-treated with Al or Fe trichlorides strongly influenced biochar AEC. Biochars produced at 700 °C exhibit greater AEC than biochars similarly prepared at 500 °C. Spectroscopic (FTIR, XPS, and SEM-EDS) studies provided evidence for the formation of AlOC organometallic moieties on biochar surfaces that formed during pyrolysis. To a lesser extent, Fe also formed FeOC surface structures on biochar, but most Fe was present in discrete crystalline phases ranging from zerovalent iron to ferric oxides. These organometallic bonding structures are a means of supporting metal oxides on biochar carbon and are responsible for broader metal atom distributions, which can increase AEC through the development of metal oxyhydroxide surface coatings that exhibit high points of zero net charge. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.03.056</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aluminum ; anion exchange capacity ; Anion exchanging ; biochar ; biomass ; carbon ; Coatings ; Crystal structure ; energy-dispersive X-ray analysis ; ferric oxide ; Fourier transform infrared spectroscopy ; Fourier transforms ; Infrared spectroscopy ; Iron ; Metal oxides ; Pretreatment ; Pyrolysis ; scanning electron microscopy ; Sorption ; Spectroscopic analysis ; temperature ; X ray photoelectron spectroscopy</subject><ispartof>Carbon (New York), 2017-07, Vol.118, p.422-430</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3</citedby><cites>FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lawrinenko, Michael</creatorcontrib><creatorcontrib>Jing, Dapeng</creatorcontrib><creatorcontrib>Banik, Chumki</creatorcontrib><creatorcontrib>Laird, David A.</creatorcontrib><title>Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity</title><title>Carbon (New York)</title><description>Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of the high point of zero net charge of metal oxyhydroxides. Here we report that pyrolysis temperature and the distribution of metal oxyhydroxides in biochars prepared by slow pyrolysis of biomass pre-treated with Al or Fe trichlorides strongly influenced biochar AEC. Biochars produced at 700 °C exhibit greater AEC than biochars similarly prepared at 500 °C. Spectroscopic (FTIR, XPS, and SEM-EDS) studies provided evidence for the formation of AlOC organometallic moieties on biochar surfaces that formed during pyrolysis. To a lesser extent, Fe also formed FeOC surface structures on biochar, but most Fe was present in discrete crystalline phases ranging from zerovalent iron to ferric oxides. These organometallic bonding structures are a means of supporting metal oxides on biochar carbon and are responsible for broader metal atom distributions, which can increase AEC through the development of metal oxyhydroxide surface coatings that exhibit high points of zero net charge. [Display omitted]</description><subject>Aluminum</subject><subject>anion exchange capacity</subject><subject>Anion exchanging</subject><subject>biochar</subject><subject>biomass</subject><subject>carbon</subject><subject>Coatings</subject><subject>Crystal structure</subject><subject>energy-dispersive X-ray analysis</subject><subject>ferric oxide</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Metal oxides</subject><subject>Pretreatment</subject><subject>Pyrolysis</subject><subject>scanning electron microscopy</subject><subject>Sorption</subject><subject>Spectroscopic analysis</subject><subject>temperature</subject><subject>X ray photoelectron spectroscopy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4KXry05qttehGWxS9YEEHPYZqdakqbrkkr7n9vlnry4Gl4zO8N8x4hl4xmjLLips0M-HpwGaeszKjIaF4ckQVTpUiFqtgxWVBKVVpwLk7JWQhtlFIxuSAvq27qrZv6BNw2sX5wSW2HHkJIdh5HjzD26MbE9jswY0jmvfkAHw02KvyOwr1jYiASdtyfk5MGuoAXv3NJ3u7vXteP6eb54Wm92qRG5nRMDcicC2hqWUtVFBXFBjnwBkApWUNd1tio3PCyKgVluWo4LcscJNJKcmYasSTX892dHz4nDKPubTDYdeBwmILmh4xMCs4ievUHbYfJu_idZhUri5xLqSIlZ8r4IQSPjd5524Pfa0b1oWfd6rlnfehZU6Fjz9F2O9swhv2y6HUwFp3BrfVoRr0d7P8HfgARDYgx</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Lawrinenko, Michael</creator><creator>Jing, Dapeng</creator><creator>Banik, Chumki</creator><creator>Laird, David A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20170701</creationdate><title>Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity</title><author>Lawrinenko, Michael ; Jing, Dapeng ; Banik, Chumki ; Laird, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>anion exchange capacity</topic><topic>Anion exchanging</topic><topic>biochar</topic><topic>biomass</topic><topic>carbon</topic><topic>Coatings</topic><topic>Crystal structure</topic><topic>energy-dispersive X-ray analysis</topic><topic>ferric oxide</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Metal oxides</topic><topic>Pretreatment</topic><topic>Pyrolysis</topic><topic>scanning electron microscopy</topic><topic>Sorption</topic><topic>Spectroscopic analysis</topic><topic>temperature</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrinenko, Michael</creatorcontrib><creatorcontrib>Jing, Dapeng</creatorcontrib><creatorcontrib>Banik, Chumki</creatorcontrib><creatorcontrib>Laird, David A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawrinenko, Michael</au><au>Jing, Dapeng</au><au>Banik, Chumki</au><au>Laird, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity</atitle><jtitle>Carbon (New York)</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>118</volume><spage>422</spage><epage>430</epage><pages>422-430</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of the high point of zero net charge of metal oxyhydroxides. Here we report that pyrolysis temperature and the distribution of metal oxyhydroxides in biochars prepared by slow pyrolysis of biomass pre-treated with Al or Fe trichlorides strongly influenced biochar AEC. Biochars produced at 700 °C exhibit greater AEC than biochars similarly prepared at 500 °C. Spectroscopic (FTIR, XPS, and SEM-EDS) studies provided evidence for the formation of AlOC organometallic moieties on biochar surfaces that formed during pyrolysis. To a lesser extent, Fe also formed FeOC surface structures on biochar, but most Fe was present in discrete crystalline phases ranging from zerovalent iron to ferric oxides. These organometallic bonding structures are a means of supporting metal oxides on biochar carbon and are responsible for broader metal atom distributions, which can increase AEC through the development of metal oxyhydroxide surface coatings that exhibit high points of zero net charge. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.03.056</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-07, Vol.118, p.422-430
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1917652448
source Elsevier
subjects Aluminum
anion exchange capacity
Anion exchanging
biochar
biomass
carbon
Coatings
Crystal structure
energy-dispersive X-ray analysis
ferric oxide
Fourier transform infrared spectroscopy
Fourier transforms
Infrared spectroscopy
Iron
Metal oxides
Pretreatment
Pyrolysis
scanning electron microscopy
Sorption
Spectroscopic analysis
temperature
X ray photoelectron spectroscopy
title Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminum%20and%20iron%20biomass%20pretreatment%20impacts%20on%20biochar%20anion%20exchange%20capacity&rft.jtitle=Carbon%20(New%20York)&rft.au=Lawrinenko,%20Michael&rft.date=2017-07-01&rft.volume=118&rft.spage=422&rft.epage=430&rft.pages=422-430&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.03.056&rft_dat=%3Cproquest_cross%3E2000414321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1917652448&rft_id=info:pmid/&rfr_iscdi=true