Loading…
Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity
Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of t...
Saved in:
Published in: | Carbon (New York) 2017-07, Vol.118, p.422-430 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3 |
container_end_page | 430 |
container_issue | |
container_start_page | 422 |
container_title | Carbon (New York) |
container_volume | 118 |
creator | Lawrinenko, Michael Jing, Dapeng Banik, Chumki Laird, David A. |
description | Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of the high point of zero net charge of metal oxyhydroxides. Here we report that pyrolysis temperature and the distribution of metal oxyhydroxides in biochars prepared by slow pyrolysis of biomass pre-treated with Al or Fe trichlorides strongly influenced biochar AEC. Biochars produced at 700 °C exhibit greater AEC than biochars similarly prepared at 500 °C. Spectroscopic (FTIR, XPS, and SEM-EDS) studies provided evidence for the formation of AlOC organometallic moieties on biochar surfaces that formed during pyrolysis. To a lesser extent, Fe also formed FeOC surface structures on biochar, but most Fe was present in discrete crystalline phases ranging from zerovalent iron to ferric oxides. These organometallic bonding structures are a means of supporting metal oxides on biochar carbon and are responsible for broader metal atom distributions, which can increase AEC through the development of metal oxyhydroxide surface coatings that exhibit high points of zero net charge.
[Display omitted] |
doi_str_mv | 10.1016/j.carbon.2017.03.056 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917652448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S000862231730297X</els_id><sourcerecordid>2000414321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYMouK7-Bx4KXry05qttehGWxS9YEEHPYZqdakqbrkkr7n9vlnry4Gl4zO8N8x4hl4xmjLLips0M-HpwGaeszKjIaF4ckQVTpUiFqtgxWVBKVVpwLk7JWQhtlFIxuSAvq27qrZv6BNw2sX5wSW2HHkJIdh5HjzD26MbE9jswY0jmvfkAHw02KvyOwr1jYiASdtyfk5MGuoAXv3NJ3u7vXteP6eb54Wm92qRG5nRMDcicC2hqWUtVFBXFBjnwBkApWUNd1tio3PCyKgVluWo4LcscJNJKcmYasSTX892dHz4nDKPubTDYdeBwmILmh4xMCs4ievUHbYfJu_idZhUri5xLqSIlZ8r4IQSPjd5524Pfa0b1oWfd6rlnfehZU6Fjz9F2O9swhv2y6HUwFp3BrfVoRr0d7P8HfgARDYgx</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917652448</pqid></control><display><type>article</type><title>Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity</title><source>Elsevier</source><creator>Lawrinenko, Michael ; Jing, Dapeng ; Banik, Chumki ; Laird, David A.</creator><creatorcontrib>Lawrinenko, Michael ; Jing, Dapeng ; Banik, Chumki ; Laird, David A.</creatorcontrib><description>Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of the high point of zero net charge of metal oxyhydroxides. Here we report that pyrolysis temperature and the distribution of metal oxyhydroxides in biochars prepared by slow pyrolysis of biomass pre-treated with Al or Fe trichlorides strongly influenced biochar AEC. Biochars produced at 700 °C exhibit greater AEC than biochars similarly prepared at 500 °C. Spectroscopic (FTIR, XPS, and SEM-EDS) studies provided evidence for the formation of AlOC organometallic moieties on biochar surfaces that formed during pyrolysis. To a lesser extent, Fe also formed FeOC surface structures on biochar, but most Fe was present in discrete crystalline phases ranging from zerovalent iron to ferric oxides. These organometallic bonding structures are a means of supporting metal oxides on biochar carbon and are responsible for broader metal atom distributions, which can increase AEC through the development of metal oxyhydroxide surface coatings that exhibit high points of zero net charge.
[Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2017.03.056</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Aluminum ; anion exchange capacity ; Anion exchanging ; biochar ; biomass ; carbon ; Coatings ; Crystal structure ; energy-dispersive X-ray analysis ; ferric oxide ; Fourier transform infrared spectroscopy ; Fourier transforms ; Infrared spectroscopy ; Iron ; Metal oxides ; Pretreatment ; Pyrolysis ; scanning electron microscopy ; Sorption ; Spectroscopic analysis ; temperature ; X ray photoelectron spectroscopy</subject><ispartof>Carbon (New York), 2017-07, Vol.118, p.422-430</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Elsevier BV Jul 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3</citedby><cites>FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Lawrinenko, Michael</creatorcontrib><creatorcontrib>Jing, Dapeng</creatorcontrib><creatorcontrib>Banik, Chumki</creatorcontrib><creatorcontrib>Laird, David A.</creatorcontrib><title>Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity</title><title>Carbon (New York)</title><description>Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of the high point of zero net charge of metal oxyhydroxides. Here we report that pyrolysis temperature and the distribution of metal oxyhydroxides in biochars prepared by slow pyrolysis of biomass pre-treated with Al or Fe trichlorides strongly influenced biochar AEC. Biochars produced at 700 °C exhibit greater AEC than biochars similarly prepared at 500 °C. Spectroscopic (FTIR, XPS, and SEM-EDS) studies provided evidence for the formation of AlOC organometallic moieties on biochar surfaces that formed during pyrolysis. To a lesser extent, Fe also formed FeOC surface structures on biochar, but most Fe was present in discrete crystalline phases ranging from zerovalent iron to ferric oxides. These organometallic bonding structures are a means of supporting metal oxides on biochar carbon and are responsible for broader metal atom distributions, which can increase AEC through the development of metal oxyhydroxide surface coatings that exhibit high points of zero net charge.
[Display omitted]</description><subject>Aluminum</subject><subject>anion exchange capacity</subject><subject>Anion exchanging</subject><subject>biochar</subject><subject>biomass</subject><subject>carbon</subject><subject>Coatings</subject><subject>Crystal structure</subject><subject>energy-dispersive X-ray analysis</subject><subject>ferric oxide</subject><subject>Fourier transform infrared spectroscopy</subject><subject>Fourier transforms</subject><subject>Infrared spectroscopy</subject><subject>Iron</subject><subject>Metal oxides</subject><subject>Pretreatment</subject><subject>Pyrolysis</subject><subject>scanning electron microscopy</subject><subject>Sorption</subject><subject>Spectroscopic analysis</subject><subject>temperature</subject><subject>X ray photoelectron spectroscopy</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYMouK7-Bx4KXry05qttehGWxS9YEEHPYZqdakqbrkkr7n9vlnry4Gl4zO8N8x4hl4xmjLLips0M-HpwGaeszKjIaF4ckQVTpUiFqtgxWVBKVVpwLk7JWQhtlFIxuSAvq27qrZv6BNw2sX5wSW2HHkJIdh5HjzD26MbE9jswY0jmvfkAHw02KvyOwr1jYiASdtyfk5MGuoAXv3NJ3u7vXteP6eb54Wm92qRG5nRMDcicC2hqWUtVFBXFBjnwBkApWUNd1tio3PCyKgVluWo4LcscJNJKcmYasSTX892dHz4nDKPubTDYdeBwmILmh4xMCs4ievUHbYfJu_idZhUri5xLqSIlZ8r4IQSPjd5524Pfa0b1oWfd6rlnfehZU6Fjz9F2O9swhv2y6HUwFp3BrfVoRr0d7P8HfgARDYgx</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Lawrinenko, Michael</creator><creator>Jing, Dapeng</creator><creator>Banik, Chumki</creator><creator>Laird, David A.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><scope>7S9</scope><scope>L.6</scope></search><sort><creationdate>20170701</creationdate><title>Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity</title><author>Lawrinenko, Michael ; Jing, Dapeng ; Banik, Chumki ; Laird, David A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum</topic><topic>anion exchange capacity</topic><topic>Anion exchanging</topic><topic>biochar</topic><topic>biomass</topic><topic>carbon</topic><topic>Coatings</topic><topic>Crystal structure</topic><topic>energy-dispersive X-ray analysis</topic><topic>ferric oxide</topic><topic>Fourier transform infrared spectroscopy</topic><topic>Fourier transforms</topic><topic>Infrared spectroscopy</topic><topic>Iron</topic><topic>Metal oxides</topic><topic>Pretreatment</topic><topic>Pyrolysis</topic><topic>scanning electron microscopy</topic><topic>Sorption</topic><topic>Spectroscopic analysis</topic><topic>temperature</topic><topic>X ray photoelectron spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lawrinenko, Michael</creatorcontrib><creatorcontrib>Jing, Dapeng</creatorcontrib><creatorcontrib>Banik, Chumki</creatorcontrib><creatorcontrib>Laird, David A.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lawrinenko, Michael</au><au>Jing, Dapeng</au><au>Banik, Chumki</au><au>Laird, David A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity</atitle><jtitle>Carbon (New York)</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>118</volume><spage>422</spage><epage>430</epage><pages>422-430</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Some biochars have significant anion exchange capacity (AEC) under acidic pH conditions but typically have little or no AEC at neutral to alkaline pHs. We hypothesized that metal oxyhydroxide surface coatings on biochar will increase biochar anion exchange capacity (AEC) at higher pHs by virtue of the high point of zero net charge of metal oxyhydroxides. Here we report that pyrolysis temperature and the distribution of metal oxyhydroxides in biochars prepared by slow pyrolysis of biomass pre-treated with Al or Fe trichlorides strongly influenced biochar AEC. Biochars produced at 700 °C exhibit greater AEC than biochars similarly prepared at 500 °C. Spectroscopic (FTIR, XPS, and SEM-EDS) studies provided evidence for the formation of AlOC organometallic moieties on biochar surfaces that formed during pyrolysis. To a lesser extent, Fe also formed FeOC surface structures on biochar, but most Fe was present in discrete crystalline phases ranging from zerovalent iron to ferric oxides. These organometallic bonding structures are a means of supporting metal oxides on biochar carbon and are responsible for broader metal atom distributions, which can increase AEC through the development of metal oxyhydroxide surface coatings that exhibit high points of zero net charge.
[Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2017.03.056</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0008-6223 |
ispartof | Carbon (New York), 2017-07, Vol.118, p.422-430 |
issn | 0008-6223 1873-3891 |
language | eng |
recordid | cdi_proquest_journals_1917652448 |
source | Elsevier |
subjects | Aluminum anion exchange capacity Anion exchanging biochar biomass carbon Coatings Crystal structure energy-dispersive X-ray analysis ferric oxide Fourier transform infrared spectroscopy Fourier transforms Infrared spectroscopy Iron Metal oxides Pretreatment Pyrolysis scanning electron microscopy Sorption Spectroscopic analysis temperature X ray photoelectron spectroscopy |
title | Aluminum and iron biomass pretreatment impacts on biochar anion exchange capacity |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T01%3A15%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Aluminum%20and%20iron%20biomass%20pretreatment%20impacts%20on%20biochar%20anion%20exchange%20capacity&rft.jtitle=Carbon%20(New%20York)&rft.au=Lawrinenko,%20Michael&rft.date=2017-07-01&rft.volume=118&rft.spage=422&rft.epage=430&rft.pages=422-430&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2017.03.056&rft_dat=%3Cproquest_cross%3E2000414321%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c450t-ca4523afb4b486690efe2a2faa884bab7bef85c279730158f20775a4e09421cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1917652448&rft_id=info:pmid/&rfr_iscdi=true |