Loading…

Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites

Carbon nanotubes (CNTs)/aluminum (Al) composites with various interfacial reaction degrees were fabricated by powder metallurgy at sintering temperature range of 700–900 K (75–96% melting point of Al). Interfacial reaction product, aluminum carbide (Al4C3), was formed in Al matrix composites (AMCs)...

Full description

Saved in:
Bibliographic Details
Published in:Carbon (New York) 2017-04, Vol.114, p.198-208
Main Authors: Chen, B., Shen, J., Ye, X., Imai, H., Umeda, J., Takahashi, M., Kondoh, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c400t-be1158410b5e6414dbae2f24a85eb098849424e12cccb1c331a8b64f053a15a93
cites cdi_FETCH-LOGICAL-c400t-be1158410b5e6414dbae2f24a85eb098849424e12cccb1c331a8b64f053a15a93
container_end_page 208
container_issue
container_start_page 198
container_title Carbon (New York)
container_volume 114
creator Chen, B.
Shen, J.
Ye, X.
Imai, H.
Umeda, J.
Takahashi, M.
Kondoh, K.
description Carbon nanotubes (CNTs)/aluminum (Al) composites with various interfacial reaction degrees were fabricated by powder metallurgy at sintering temperature range of 700–900 K (75–96% melting point of Al). Interfacial reaction product, aluminum carbide (Al4C3), was formed in Al matrix composites (AMCs) reinforced by homogeneously-dispersed CNTs. Microscopy observations revealed three types of temperature-dependent interfaces, i) clean CNT-Al interfaces without interfacial carbide, ii) CNT-Al4C3-Al interfaces for partially reacted CNTs with Al4C3 nanoparticles, and iii) Al4C3-Al interface for in-situ Al4C3 nanorods evolved from completely reacted CNTs. Interfacial Al4C3 on partially reacted CNTs led to significant improvement of interfacial strength and consequent enhancement of load transfer efficiency in AMCs, compared to those composites without carbide. The load transfer mechanism of CNTs in composites was confirmed by the pull-out phenomena during in-situ tensile tests. The role of interfacial carbide played in determining the load transfer efficiency of CNTs was discussed. This study may provide new insights into the interfacial phenomena and load transfer mechanism in CNT-reinforced metal matrix composites. [Display omitted]
doi_str_mv 10.1016/j.carbon.2016.12.013
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1917695941</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0008622316310831</els_id><sourcerecordid>1917695941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-be1158410b5e6414dbae2f24a85eb098849424e12cccb1c331a8b64f053a15a93</originalsourceid><addsrcrecordid>eNp9kEFr3TAQhEVpoa9J_kEPglzSg12tLDvyJVAeSVsIzaHJWazlFehhSy-SHJJLf3ucuueeloGdGeZj7DOIGgR0Xw-1xTTEUMtV1SBrAc07tgN92VSN7uE92wkhdNVJ2Xxkn3I-rFJpUDv253ec_FjlgoW4D4WSQ-tx4onQFh8DxzDyKeLIS8KQHSVOznnrKdiX1cG3ah4wxLIMlPnF_td9_lIl8sHFZGnkOC2zD8vMZyzJP3Mb52PMvlA-ZR8cTpnO_t0T9nBzfb__Ud3eff-5_3ZbWSVEqQYCaLUCMbTUKVDjgCSdVKhbGkSvteqVVATSWjuAbRpAPXTKibZBaLFvTtj5lntM8XGhXMwhLimslQZ6uOz6tlewfqnty6aYcyJnjsnPmF4MCPNG2hzMNte8kTYgzUp6tV1tNloXPHlKJv_FQ6NPZIsZo_9_wCs80YrA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1917695941</pqid></control><display><type>article</type><title>Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites</title><source>Elsevier</source><creator>Chen, B. ; Shen, J. ; Ye, X. ; Imai, H. ; Umeda, J. ; Takahashi, M. ; Kondoh, K.</creator><creatorcontrib>Chen, B. ; Shen, J. ; Ye, X. ; Imai, H. ; Umeda, J. ; Takahashi, M. ; Kondoh, K.</creatorcontrib><description>Carbon nanotubes (CNTs)/aluminum (Al) composites with various interfacial reaction degrees were fabricated by powder metallurgy at sintering temperature range of 700–900 K (75–96% melting point of Al). Interfacial reaction product, aluminum carbide (Al4C3), was formed in Al matrix composites (AMCs) reinforced by homogeneously-dispersed CNTs. Microscopy observations revealed three types of temperature-dependent interfaces, i) clean CNT-Al interfaces without interfacial carbide, ii) CNT-Al4C3-Al interfaces for partially reacted CNTs with Al4C3 nanoparticles, and iii) Al4C3-Al interface for in-situ Al4C3 nanorods evolved from completely reacted CNTs. Interfacial Al4C3 on partially reacted CNTs led to significant improvement of interfacial strength and consequent enhancement of load transfer efficiency in AMCs, compared to those composites without carbide. The load transfer mechanism of CNTs in composites was confirmed by the pull-out phenomena during in-situ tensile tests. The role of interfacial carbide played in determining the load transfer efficiency of CNTs was discussed. This study may provide new insights into the interfacial phenomena and load transfer mechanism in CNT-reinforced metal matrix composites. [Display omitted]</description><identifier>ISSN: 0008-6223</identifier><identifier>EISSN: 1873-3891</identifier><identifier>DOI: 10.1016/j.carbon.2016.12.013</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Alloys ; Aluminum ; Aluminum base alloys ; Aluminum carbide ; Aluminum matrix composites ; Carbon nanotubes ; Efficiency ; Interfacial strength ; Load transfer ; Melting ; Metal matrix composites ; Nanorods ; Nanotubes ; Particulate composites ; Powder metallurgy ; Sintering ; Tensile tests</subject><ispartof>Carbon (New York), 2017-04, Vol.114, p.198-208</ispartof><rights>2016 Elsevier Ltd</rights><rights>Copyright Elsevier BV Apr 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-be1158410b5e6414dbae2f24a85eb098849424e12cccb1c331a8b64f053a15a93</citedby><cites>FETCH-LOGICAL-c400t-be1158410b5e6414dbae2f24a85eb098849424e12cccb1c331a8b64f053a15a93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, B.</creatorcontrib><creatorcontrib>Shen, J.</creatorcontrib><creatorcontrib>Ye, X.</creatorcontrib><creatorcontrib>Imai, H.</creatorcontrib><creatorcontrib>Umeda, J.</creatorcontrib><creatorcontrib>Takahashi, M.</creatorcontrib><creatorcontrib>Kondoh, K.</creatorcontrib><title>Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites</title><title>Carbon (New York)</title><description>Carbon nanotubes (CNTs)/aluminum (Al) composites with various interfacial reaction degrees were fabricated by powder metallurgy at sintering temperature range of 700–900 K (75–96% melting point of Al). Interfacial reaction product, aluminum carbide (Al4C3), was formed in Al matrix composites (AMCs) reinforced by homogeneously-dispersed CNTs. Microscopy observations revealed three types of temperature-dependent interfaces, i) clean CNT-Al interfaces without interfacial carbide, ii) CNT-Al4C3-Al interfaces for partially reacted CNTs with Al4C3 nanoparticles, and iii) Al4C3-Al interface for in-situ Al4C3 nanorods evolved from completely reacted CNTs. Interfacial Al4C3 on partially reacted CNTs led to significant improvement of interfacial strength and consequent enhancement of load transfer efficiency in AMCs, compared to those composites without carbide. The load transfer mechanism of CNTs in composites was confirmed by the pull-out phenomena during in-situ tensile tests. The role of interfacial carbide played in determining the load transfer efficiency of CNTs was discussed. This study may provide new insights into the interfacial phenomena and load transfer mechanism in CNT-reinforced metal matrix composites. [Display omitted]</description><subject>Alloys</subject><subject>Aluminum</subject><subject>Aluminum base alloys</subject><subject>Aluminum carbide</subject><subject>Aluminum matrix composites</subject><subject>Carbon nanotubes</subject><subject>Efficiency</subject><subject>Interfacial strength</subject><subject>Load transfer</subject><subject>Melting</subject><subject>Metal matrix composites</subject><subject>Nanorods</subject><subject>Nanotubes</subject><subject>Particulate composites</subject><subject>Powder metallurgy</subject><subject>Sintering</subject><subject>Tensile tests</subject><issn>0008-6223</issn><issn>1873-3891</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEFr3TAQhEVpoa9J_kEPglzSg12tLDvyJVAeSVsIzaHJWazlFehhSy-SHJJLf3ucuueeloGdGeZj7DOIGgR0Xw-1xTTEUMtV1SBrAc07tgN92VSN7uE92wkhdNVJ2Xxkn3I-rFJpUDv253ec_FjlgoW4D4WSQ-tx4onQFh8DxzDyKeLIS8KQHSVOznnrKdiX1cG3ah4wxLIMlPnF_td9_lIl8sHFZGnkOC2zD8vMZyzJP3Mb52PMvlA-ZR8cTpnO_t0T9nBzfb__Ud3eff-5_3ZbWSVEqQYCaLUCMbTUKVDjgCSdVKhbGkSvteqVVATSWjuAbRpAPXTKibZBaLFvTtj5lntM8XGhXMwhLimslQZ6uOz6tlewfqnty6aYcyJnjsnPmF4MCPNG2hzMNte8kTYgzUp6tV1tNloXPHlKJv_FQ6NPZIsZo_9_wCs80YrA</recordid><startdate>201704</startdate><enddate>201704</enddate><creator>Chen, B.</creator><creator>Shen, J.</creator><creator>Ye, X.</creator><creator>Imai, H.</creator><creator>Umeda, J.</creator><creator>Takahashi, M.</creator><creator>Kondoh, K.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope></search><sort><creationdate>201704</creationdate><title>Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites</title><author>Chen, B. ; Shen, J. ; Ye, X. ; Imai, H. ; Umeda, J. ; Takahashi, M. ; Kondoh, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-be1158410b5e6414dbae2f24a85eb098849424e12cccb1c331a8b64f053a15a93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Aluminum</topic><topic>Aluminum base alloys</topic><topic>Aluminum carbide</topic><topic>Aluminum matrix composites</topic><topic>Carbon nanotubes</topic><topic>Efficiency</topic><topic>Interfacial strength</topic><topic>Load transfer</topic><topic>Melting</topic><topic>Metal matrix composites</topic><topic>Nanorods</topic><topic>Nanotubes</topic><topic>Particulate composites</topic><topic>Powder metallurgy</topic><topic>Sintering</topic><topic>Tensile tests</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, B.</creatorcontrib><creatorcontrib>Shen, J.</creatorcontrib><creatorcontrib>Ye, X.</creatorcontrib><creatorcontrib>Imai, H.</creatorcontrib><creatorcontrib>Umeda, J.</creatorcontrib><creatorcontrib>Takahashi, M.</creatorcontrib><creatorcontrib>Kondoh, K.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>Carbon (New York)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, B.</au><au>Shen, J.</au><au>Ye, X.</au><au>Imai, H.</au><au>Umeda, J.</au><au>Takahashi, M.</au><au>Kondoh, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites</atitle><jtitle>Carbon (New York)</jtitle><date>2017-04</date><risdate>2017</risdate><volume>114</volume><spage>198</spage><epage>208</epage><pages>198-208</pages><issn>0008-6223</issn><eissn>1873-3891</eissn><abstract>Carbon nanotubes (CNTs)/aluminum (Al) composites with various interfacial reaction degrees were fabricated by powder metallurgy at sintering temperature range of 700–900 K (75–96% melting point of Al). Interfacial reaction product, aluminum carbide (Al4C3), was formed in Al matrix composites (AMCs) reinforced by homogeneously-dispersed CNTs. Microscopy observations revealed three types of temperature-dependent interfaces, i) clean CNT-Al interfaces without interfacial carbide, ii) CNT-Al4C3-Al interfaces for partially reacted CNTs with Al4C3 nanoparticles, and iii) Al4C3-Al interface for in-situ Al4C3 nanorods evolved from completely reacted CNTs. Interfacial Al4C3 on partially reacted CNTs led to significant improvement of interfacial strength and consequent enhancement of load transfer efficiency in AMCs, compared to those composites without carbide. The load transfer mechanism of CNTs in composites was confirmed by the pull-out phenomena during in-situ tensile tests. The role of interfacial carbide played in determining the load transfer efficiency of CNTs was discussed. This study may provide new insights into the interfacial phenomena and load transfer mechanism in CNT-reinforced metal matrix composites. [Display omitted]</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.carbon.2016.12.013</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0008-6223
ispartof Carbon (New York), 2017-04, Vol.114, p.198-208
issn 0008-6223
1873-3891
language eng
recordid cdi_proquest_journals_1917695941
source Elsevier
subjects Alloys
Aluminum
Aluminum base alloys
Aluminum carbide
Aluminum matrix composites
Carbon nanotubes
Efficiency
Interfacial strength
Load transfer
Melting
Metal matrix composites
Nanorods
Nanotubes
Particulate composites
Powder metallurgy
Sintering
Tensile tests
title Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A34%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Solid-state%20interfacial%20reaction%20and%20load%20transfer%20efficiency%20in%20carbon%20nanotubes%20(CNTs)-reinforced%20aluminum%20matrix%20composites&rft.jtitle=Carbon%20(New%20York)&rft.au=Chen,%20B.&rft.date=2017-04&rft.volume=114&rft.spage=198&rft.epage=208&rft.pages=198-208&rft.issn=0008-6223&rft.eissn=1873-3891&rft_id=info:doi/10.1016/j.carbon.2016.12.013&rft_dat=%3Cproquest_cross%3E1917695941%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c400t-be1158410b5e6414dbae2f24a85eb098849424e12cccb1c331a8b64f053a15a93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1917695941&rft_id=info:pmid/&rfr_iscdi=true