Loading…
Graphene oxide as high-performance dielectric materials for capacitive pressure sensors
Graphene oxide (GO) foam exhibits both excellent elastic property and high relative dielectric permittivity, which is a novel building block for future wearable electronic devices. Herein we present an ultra-sensitive GO-based capacitive pressure sensor with graphene as electrodes by an efficient, l...
Saved in:
Published in: | Carbon (New York) 2017-04, Vol.114, p.209-216 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Graphene oxide (GO) foam exhibits both excellent elastic property and high relative dielectric permittivity, which is a novel building block for future wearable electronic devices. Herein we present an ultra-sensitive GO-based capacitive pressure sensor with graphene as electrodes by an efficient, low-cost fabrication strategy over large-area integration as well as patterning for recording spatial pressure distribution. The GO-based sensor can detect a subtle pressure of ∼0.24Pa with a fast response time (∼100 m) and a high sensitivity (∼0.8 kPa−1). The superior sensing properties combining with good flexibility and robustness reveal a great application potential in various fields, such as health monitoring, flexible human-computer user interfaces, and robotics, which also give a new insight for all-carbon electronics.
[Display omitted] |
---|---|
ISSN: | 0008-6223 1873-3891 |
DOI: | 10.1016/j.carbon.2016.12.023 |