Loading…

Multi-site solar power forecasting using gradient boosted regression trees

•Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of exp...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy 2017-07, Vol.150, p.423-436
Main Authors: Persson, Caroline, Bacher, Peder, Shiga, Takahiro, Madsen, Henrik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603
cites cdi_FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603
container_end_page 436
container_issue
container_start_page 423
container_title Solar energy
container_volume 150
creator Persson, Caroline
Bacher, Peder
Shiga, Takahiro
Madsen, Henrik
description •Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of explanatory variables for various forecast horizons. The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical power generation and relevant meteorological variables related to 42 individual PV rooftop installations are used to train a gradient boosted regression tree (GBRT) model. When compared to single-site linear autoregressive and variations of GBRT models the multi-site model shows competitive results in terms of root mean squared error on all forecast horizons. The predictive performance and the simplicity of the model setup make the boosted tree model a simple and attractive compliment to conventional forecasting techniques.
doi_str_mv 10.1016/j.solener.2017.04.066
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1919108280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X17303717</els_id><sourcerecordid>1919108280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKHguXWSNml7Eln8ZMWLgreQTaZLytrUJFX896bs3mVghmHeeYd5CLmkUFCg4rovgtvhgL5gQOsCqgKEOCILWtU0p4zXx2QBUDY5tOzjlJyF0EMS0qZekOeXaRdtHmzELLkon43uB33WOY9ahWiHbTaFOW-9MhaHmG2cCxFN5nHrMQTrhix6xHBOTjq1C3hxqEvyfn_3tnrM168PT6vbda6rqop5qRhjIDZdW3LaKsM3qTVGKAqmbkpWUUVVKxqDDLRiZdloUJzzmgvNUEC5JFd739G7rwlDlL2b_JBOStqmgIY1s4rvVdq7EDx2cvT2U_lfSUHO2GQvD9jkjE1CJRO2tHez38P0wrdN06DT2xqNTUSiNM7-4_AHBQV48g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919108280</pqid></control><display><type>article</type><title>Multi-site solar power forecasting using gradient boosted regression trees</title><source>Elsevier</source><creator>Persson, Caroline ; Bacher, Peder ; Shiga, Takahiro ; Madsen, Henrik</creator><creatorcontrib>Persson, Caroline ; Bacher, Peder ; Shiga, Takahiro ; Madsen, Henrik</creatorcontrib><description>•Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of explanatory variables for various forecast horizons. The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical power generation and relevant meteorological variables related to 42 individual PV rooftop installations are used to train a gradient boosted regression tree (GBRT) model. When compared to single-site linear autoregressive and variations of GBRT models the multi-site model shows competitive results in terms of root mean squared error on all forecast horizons. The predictive performance and the simplicity of the model setup make the boosted tree model a simple and attractive compliment to conventional forecasting techniques.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2017.04.066</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Climatology ; Electric power generation ; Energy consumption ; Forecasting ; Forecasting techniques ; Gradient boosting ; Learning algorithms ; Machine learning ; Mathematical models ; Multi-site forecasting ; Performance prediction ; Photovoltaic cells ; Power ; Regression analysis ; Regression trees ; Renewable energy sources ; Solar cells ; Solar energy ; Solar power ; Solar power forecasting ; Spatio-temporal forecasting ; Weather forecasting</subject><ispartof>Solar energy, 2017-07, Vol.150, p.423-436</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jul 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603</citedby><cites>FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Persson, Caroline</creatorcontrib><creatorcontrib>Bacher, Peder</creatorcontrib><creatorcontrib>Shiga, Takahiro</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><title>Multi-site solar power forecasting using gradient boosted regression trees</title><title>Solar energy</title><description>•Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of explanatory variables for various forecast horizons. The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical power generation and relevant meteorological variables related to 42 individual PV rooftop installations are used to train a gradient boosted regression tree (GBRT) model. When compared to single-site linear autoregressive and variations of GBRT models the multi-site model shows competitive results in terms of root mean squared error on all forecast horizons. The predictive performance and the simplicity of the model setup make the boosted tree model a simple and attractive compliment to conventional forecasting techniques.</description><subject>Climatology</subject><subject>Electric power generation</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Gradient boosting</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Multi-site forecasting</subject><subject>Performance prediction</subject><subject>Photovoltaic cells</subject><subject>Power</subject><subject>Regression analysis</subject><subject>Regression trees</subject><subject>Renewable energy sources</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Solar power forecasting</subject><subject>Spatio-temporal forecasting</subject><subject>Weather forecasting</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKHguXWSNml7Eln8ZMWLgreQTaZLytrUJFX896bs3mVghmHeeYd5CLmkUFCg4rovgtvhgL5gQOsCqgKEOCILWtU0p4zXx2QBUDY5tOzjlJyF0EMS0qZekOeXaRdtHmzELLkon43uB33WOY9ahWiHbTaFOW-9MhaHmG2cCxFN5nHrMQTrhix6xHBOTjq1C3hxqEvyfn_3tnrM168PT6vbda6rqop5qRhjIDZdW3LaKsM3qTVGKAqmbkpWUUVVKxqDDLRiZdloUJzzmgvNUEC5JFd739G7rwlDlL2b_JBOStqmgIY1s4rvVdq7EDx2cvT2U_lfSUHO2GQvD9jkjE1CJRO2tHez38P0wrdN06DT2xqNTUSiNM7-4_AHBQV48g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Persson, Caroline</creator><creator>Bacher, Peder</creator><creator>Shiga, Takahiro</creator><creator>Madsen, Henrik</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170701</creationdate><title>Multi-site solar power forecasting using gradient boosted regression trees</title><author>Persson, Caroline ; Bacher, Peder ; Shiga, Takahiro ; Madsen, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Climatology</topic><topic>Electric power generation</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Gradient boosting</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Multi-site forecasting</topic><topic>Performance prediction</topic><topic>Photovoltaic cells</topic><topic>Power</topic><topic>Regression analysis</topic><topic>Regression trees</topic><topic>Renewable energy sources</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Solar power forecasting</topic><topic>Spatio-temporal forecasting</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persson, Caroline</creatorcontrib><creatorcontrib>Bacher, Peder</creatorcontrib><creatorcontrib>Shiga, Takahiro</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persson, Caroline</au><au>Bacher, Peder</au><au>Shiga, Takahiro</au><au>Madsen, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-site solar power forecasting using gradient boosted regression trees</atitle><jtitle>Solar energy</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>150</volume><spage>423</spage><epage>436</epage><pages>423-436</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of explanatory variables for various forecast horizons. The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical power generation and relevant meteorological variables related to 42 individual PV rooftop installations are used to train a gradient boosted regression tree (GBRT) model. When compared to single-site linear autoregressive and variations of GBRT models the multi-site model shows competitive results in terms of root mean squared error on all forecast horizons. The predictive performance and the simplicity of the model setup make the boosted tree model a simple and attractive compliment to conventional forecasting techniques.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2017.04.066</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0038-092X
ispartof Solar energy, 2017-07, Vol.150, p.423-436
issn 0038-092X
1471-1257
language eng
recordid cdi_proquest_journals_1919108280
source Elsevier
subjects Climatology
Electric power generation
Energy consumption
Forecasting
Forecasting techniques
Gradient boosting
Learning algorithms
Machine learning
Mathematical models
Multi-site forecasting
Performance prediction
Photovoltaic cells
Power
Regression analysis
Regression trees
Renewable energy sources
Solar cells
Solar energy
Solar power
Solar power forecasting
Spatio-temporal forecasting
Weather forecasting
title Multi-site solar power forecasting using gradient boosted regression trees
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-site%20solar%20power%20forecasting%20using%20gradient%20boosted%20regression%20trees&rft.jtitle=Solar%20energy&rft.au=Persson,%20Caroline&rft.date=2017-07-01&rft.volume=150&rft.spage=423&rft.epage=436&rft.pages=423-436&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2017.04.066&rft_dat=%3Cproquest_cross%3E1919108280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1919108280&rft_id=info:pmid/&rfr_iscdi=true