Loading…
Multi-site solar power forecasting using gradient boosted regression trees
•Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of exp...
Saved in:
Published in: | Solar energy 2017-07, Vol.150, p.423-436 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603 |
container_end_page | 436 |
container_issue | |
container_start_page | 423 |
container_title | Solar energy |
container_volume | 150 |
creator | Persson, Caroline Bacher, Peder Shiga, Takahiro Madsen, Henrik |
description | •Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of explanatory variables for various forecast horizons.
The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical power generation and relevant meteorological variables related to 42 individual PV rooftop installations are used to train a gradient boosted regression tree (GBRT) model. When compared to single-site linear autoregressive and variations of GBRT models the multi-site model shows competitive results in terms of root mean squared error on all forecast horizons. The predictive performance and the simplicity of the model setup make the boosted tree model a simple and attractive compliment to conventional forecasting techniques. |
doi_str_mv | 10.1016/j.solener.2017.04.066 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1919108280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0038092X17303717</els_id><sourcerecordid>1919108280</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-BKHguXWSNml7Eln8ZMWLgreQTaZLytrUJFX896bs3mVghmHeeYd5CLmkUFCg4rovgtvhgL5gQOsCqgKEOCILWtU0p4zXx2QBUDY5tOzjlJyF0EMS0qZekOeXaRdtHmzELLkon43uB33WOY9ahWiHbTaFOW-9MhaHmG2cCxFN5nHrMQTrhix6xHBOTjq1C3hxqEvyfn_3tnrM168PT6vbda6rqop5qRhjIDZdW3LaKsM3qTVGKAqmbkpWUUVVKxqDDLRiZdloUJzzmgvNUEC5JFd739G7rwlDlL2b_JBOStqmgIY1s4rvVdq7EDx2cvT2U_lfSUHO2GQvD9jkjE1CJRO2tHez38P0wrdN06DT2xqNTUSiNM7-4_AHBQV48g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919108280</pqid></control><display><type>article</type><title>Multi-site solar power forecasting using gradient boosted regression trees</title><source>Elsevier</source><creator>Persson, Caroline ; Bacher, Peder ; Shiga, Takahiro ; Madsen, Henrik</creator><creatorcontrib>Persson, Caroline ; Bacher, Peder ; Shiga, Takahiro ; Madsen, Henrik</creatorcontrib><description>•Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of explanatory variables for various forecast horizons.
The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical power generation and relevant meteorological variables related to 42 individual PV rooftop installations are used to train a gradient boosted regression tree (GBRT) model. When compared to single-site linear autoregressive and variations of GBRT models the multi-site model shows competitive results in terms of root mean squared error on all forecast horizons. The predictive performance and the simplicity of the model setup make the boosted tree model a simple and attractive compliment to conventional forecasting techniques.</description><identifier>ISSN: 0038-092X</identifier><identifier>EISSN: 1471-1257</identifier><identifier>DOI: 10.1016/j.solener.2017.04.066</identifier><language>eng</language><publisher>New York: Elsevier Ltd</publisher><subject>Climatology ; Electric power generation ; Energy consumption ; Forecasting ; Forecasting techniques ; Gradient boosting ; Learning algorithms ; Machine learning ; Mathematical models ; Multi-site forecasting ; Performance prediction ; Photovoltaic cells ; Power ; Regression analysis ; Regression trees ; Renewable energy sources ; Solar cells ; Solar energy ; Solar power ; Solar power forecasting ; Spatio-temporal forecasting ; Weather forecasting</subject><ispartof>Solar energy, 2017-07, Vol.150, p.423-436</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright Pergamon Press Inc. Jul 1, 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603</citedby><cites>FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Persson, Caroline</creatorcontrib><creatorcontrib>Bacher, Peder</creatorcontrib><creatorcontrib>Shiga, Takahiro</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><title>Multi-site solar power forecasting using gradient boosted regression trees</title><title>Solar energy</title><description>•Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of explanatory variables for various forecast horizons.
The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical power generation and relevant meteorological variables related to 42 individual PV rooftop installations are used to train a gradient boosted regression tree (GBRT) model. When compared to single-site linear autoregressive and variations of GBRT models the multi-site model shows competitive results in terms of root mean squared error on all forecast horizons. The predictive performance and the simplicity of the model setup make the boosted tree model a simple and attractive compliment to conventional forecasting techniques.</description><subject>Climatology</subject><subject>Electric power generation</subject><subject>Energy consumption</subject><subject>Forecasting</subject><subject>Forecasting techniques</subject><subject>Gradient boosting</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mathematical models</subject><subject>Multi-site forecasting</subject><subject>Performance prediction</subject><subject>Photovoltaic cells</subject><subject>Power</subject><subject>Regression analysis</subject><subject>Regression trees</subject><subject>Renewable energy sources</subject><subject>Solar cells</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Solar power forecasting</subject><subject>Spatio-temporal forecasting</subject><subject>Weather forecasting</subject><issn>0038-092X</issn><issn>1471-1257</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-BKHguXWSNml7Eln8ZMWLgreQTaZLytrUJFX896bs3mVghmHeeYd5CLmkUFCg4rovgtvhgL5gQOsCqgKEOCILWtU0p4zXx2QBUDY5tOzjlJyF0EMS0qZekOeXaRdtHmzELLkon43uB33WOY9ahWiHbTaFOW-9MhaHmG2cCxFN5nHrMQTrhix6xHBOTjq1C3hxqEvyfn_3tnrM168PT6vbda6rqop5qRhjIDZdW3LaKsM3qTVGKAqmbkpWUUVVKxqDDLRiZdloUJzzmgvNUEC5JFd739G7rwlDlL2b_JBOStqmgIY1s4rvVdq7EDx2cvT2U_lfSUHO2GQvD9jkjE1CJRO2tHez38P0wrdN06DT2xqNTUSiNM7-4_AHBQV48g</recordid><startdate>20170701</startdate><enddate>20170701</enddate><creator>Persson, Caroline</creator><creator>Bacher, Peder</creator><creator>Shiga, Takahiro</creator><creator>Madsen, Henrik</creator><general>Elsevier Ltd</general><general>Pergamon Press Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>SOI</scope></search><sort><creationdate>20170701</creationdate><title>Multi-site solar power forecasting using gradient boosted regression trees</title><author>Persson, Caroline ; Bacher, Peder ; Shiga, Takahiro ; Madsen, Henrik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Climatology</topic><topic>Electric power generation</topic><topic>Energy consumption</topic><topic>Forecasting</topic><topic>Forecasting techniques</topic><topic>Gradient boosting</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mathematical models</topic><topic>Multi-site forecasting</topic><topic>Performance prediction</topic><topic>Photovoltaic cells</topic><topic>Power</topic><topic>Regression analysis</topic><topic>Regression trees</topic><topic>Renewable energy sources</topic><topic>Solar cells</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Solar power forecasting</topic><topic>Spatio-temporal forecasting</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Persson, Caroline</creatorcontrib><creatorcontrib>Bacher, Peder</creatorcontrib><creatorcontrib>Shiga, Takahiro</creatorcontrib><creatorcontrib>Madsen, Henrik</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Solar energy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Persson, Caroline</au><au>Bacher, Peder</au><au>Shiga, Takahiro</au><au>Madsen, Henrik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-site solar power forecasting using gradient boosted regression trees</atitle><jtitle>Solar energy</jtitle><date>2017-07-01</date><risdate>2017</risdate><volume>150</volume><spage>423</spage><epage>436</epage><pages>423-436</pages><issn>0038-092X</issn><eissn>1471-1257</eissn><abstract>•Gradient boosted regression trees applied for prediction of solar power generation.•A non-parametric approach for multi-site prediction of solar power generation 1-6 hours ahead.•Gradient Boosted Regression Trees outperforms simpler autoregressive models.•Combining and ranking the importance of explanatory variables for various forecast horizons.
The challenges to optimally utilize weather dependent renewable energy sources call for powerful tools for forecasting. This paper presents a non-parametric machine learning approach used for multi-site prediction of solar power generation on a forecast horizon of one to six hours. Historical power generation and relevant meteorological variables related to 42 individual PV rooftop installations are used to train a gradient boosted regression tree (GBRT) model. When compared to single-site linear autoregressive and variations of GBRT models the multi-site model shows competitive results in terms of root mean squared error on all forecast horizons. The predictive performance and the simplicity of the model setup make the boosted tree model a simple and attractive compliment to conventional forecasting techniques.</abstract><cop>New York</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.solener.2017.04.066</doi><tpages>14</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0038-092X |
ispartof | Solar energy, 2017-07, Vol.150, p.423-436 |
issn | 0038-092X 1471-1257 |
language | eng |
recordid | cdi_proquest_journals_1919108280 |
source | Elsevier |
subjects | Climatology Electric power generation Energy consumption Forecasting Forecasting techniques Gradient boosting Learning algorithms Machine learning Mathematical models Multi-site forecasting Performance prediction Photovoltaic cells Power Regression analysis Regression trees Renewable energy sources Solar cells Solar energy Solar power Solar power forecasting Spatio-temporal forecasting Weather forecasting |
title | Multi-site solar power forecasting using gradient boosted regression trees |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-site%20solar%20power%20forecasting%20using%20gradient%20boosted%20regression%20trees&rft.jtitle=Solar%20energy&rft.au=Persson,%20Caroline&rft.date=2017-07-01&rft.volume=150&rft.spage=423&rft.epage=436&rft.pages=423-436&rft.issn=0038-092X&rft.eissn=1471-1257&rft_id=info:doi/10.1016/j.solener.2017.04.066&rft_dat=%3Cproquest_cross%3E1919108280%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-3a22206bf93519ad5b220dd6a10d783241a1a968de20ca2338c0a555756c2e603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1919108280&rft_id=info:pmid/&rfr_iscdi=true |