Loading…

Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces

In this article we revisit some classical conjectures in harmonic analysis in the setting of mixed norm spaces L r a d p L a n g 2 R n . We produce sharp bounds for the restriction of the Fourier transform to compact hypersurfaces of revolution in the mixed norm setting and study an extension of the...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2017-08, Vol.286 (3-4), p.1479-1493
Main Authors: Córdoba, Antonio, Latorre Crespo, Eric
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-3dc07fdd1d2246899f425085db9ffc9c780ccf97f4b1ec14a6853e45d5e970253
cites cdi_FETCH-LOGICAL-c316t-3dc07fdd1d2246899f425085db9ffc9c780ccf97f4b1ec14a6853e45d5e970253
container_end_page 1493
container_issue 3-4
container_start_page 1479
container_title Mathematische Zeitschrift
container_volume 286
creator Córdoba, Antonio
Latorre Crespo, Eric
description In this article we revisit some classical conjectures in harmonic analysis in the setting of mixed norm spaces L r a d p L a n g 2 R n . We produce sharp bounds for the restriction of the Fourier transform to compact hypersurfaces of revolution in the mixed norm setting and study an extension of the disc multiplier. We also present some results for the discrete restriction conjecture and state an intriguing open problem.
doi_str_mv 10.1007/s00209-016-1810-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1919129352</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919129352</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-3dc07fdd1d2246899f425085db9ffc9c780ccf97f4b1ec14a6853e45d5e970253</originalsourceid><addsrcrecordid>eNp1kMlKBDEQhoMoOC4P4C3gOZq10znK4KgwIIjehJDJohl6M-kG5-1N0x68SB2Kor6_lh-AK4JvCMbyNmNMsUKYVIjUBKPDEVgRzmipKDsGq9IWSNSSn4KznPcYl6bkK_D-Ylw0DWynZoxDE33K0HQOJp_HFO0Y-w6OPcxTCsb6DPsAx08PN_2UCgvHZLoc-tTC2ME2fnuHurnKw0xfgJNgmuwvf_M5eNvcv64f0fb54Wl9t0WWkWpEzFksg3PEUcqrWqnAqcC1cDsVglVW1tjaoGTgO-It4aaqBfNcOOGVLH-xc3C9zB1S_zWVy_W-3NeVlZqoElQxQQtFFsqmPufkgx5SbE06aIL1bKJeTNTFRD2bqA9FQxdNLmz34dOfyf-KfgA9EnX2</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919129352</pqid></control><display><type>article</type><title>Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces</title><source>Springer Nature</source><creator>Córdoba, Antonio ; Latorre Crespo, Eric</creator><creatorcontrib>Córdoba, Antonio ; Latorre Crespo, Eric</creatorcontrib><description>In this article we revisit some classical conjectures in harmonic analysis in the setting of mixed norm spaces L r a d p L a n g 2 R n . We produce sharp bounds for the restriction of the Fourier transform to compact hypersurfaces of revolution in the mixed norm setting and study an extension of the disc multiplier. We also present some results for the discrete restriction conjecture and state an intriguing open problem.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-016-1810-y</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Fourier analysis ; Fourier transforms ; Geometry ; Harmonic analysis ; Mathematics ; Mathematics and Statistics ; Multipliers</subject><ispartof>Mathematische Zeitschrift, 2017-08, Vol.286 (3-4), p.1479-1493</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-3dc07fdd1d2246899f425085db9ffc9c780ccf97f4b1ec14a6853e45d5e970253</citedby><cites>FETCH-LOGICAL-c316t-3dc07fdd1d2246899f425085db9ffc9c780ccf97f4b1ec14a6853e45d5e970253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Córdoba, Antonio</creatorcontrib><creatorcontrib>Latorre Crespo, Eric</creatorcontrib><title>Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>In this article we revisit some classical conjectures in harmonic analysis in the setting of mixed norm spaces L r a d p L a n g 2 R n . We produce sharp bounds for the restriction of the Fourier transform to compact hypersurfaces of revolution in the mixed norm setting and study an extension of the disc multiplier. We also present some results for the discrete restriction conjecture and state an intriguing open problem.</description><subject>Fourier analysis</subject><subject>Fourier transforms</subject><subject>Geometry</subject><subject>Harmonic analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Multipliers</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kMlKBDEQhoMoOC4P4C3gOZq10znK4KgwIIjehJDJohl6M-kG5-1N0x68SB2Kor6_lh-AK4JvCMbyNmNMsUKYVIjUBKPDEVgRzmipKDsGq9IWSNSSn4KznPcYl6bkK_D-Ylw0DWynZoxDE33K0HQOJp_HFO0Y-w6OPcxTCsb6DPsAx08PN_2UCgvHZLoc-tTC2ME2fnuHurnKw0xfgJNgmuwvf_M5eNvcv64f0fb54Wl9t0WWkWpEzFksg3PEUcqrWqnAqcC1cDsVglVW1tjaoGTgO-It4aaqBfNcOOGVLH-xc3C9zB1S_zWVy_W-3NeVlZqoElQxQQtFFsqmPufkgx5SbE06aIL1bKJeTNTFRD2bqA9FQxdNLmz34dOfyf-KfgA9EnX2</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Córdoba, Antonio</creator><creator>Latorre Crespo, Eric</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces</title><author>Córdoba, Antonio ; Latorre Crespo, Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-3dc07fdd1d2246899f425085db9ffc9c780ccf97f4b1ec14a6853e45d5e970253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Fourier analysis</topic><topic>Fourier transforms</topic><topic>Geometry</topic><topic>Harmonic analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Multipliers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Córdoba, Antonio</creatorcontrib><creatorcontrib>Latorre Crespo, Eric</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Córdoba, Antonio</au><au>Latorre Crespo, Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>286</volume><issue>3-4</issue><spage>1479</spage><epage>1493</epage><pages>1479-1493</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>In this article we revisit some classical conjectures in harmonic analysis in the setting of mixed norm spaces L r a d p L a n g 2 R n . We produce sharp bounds for the restriction of the Fourier transform to compact hypersurfaces of revolution in the mixed norm setting and study an extension of the disc multiplier. We also present some results for the discrete restriction conjecture and state an intriguing open problem.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-016-1810-y</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2017-08, Vol.286 (3-4), p.1479-1493
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_1919129352
source Springer Nature
subjects Fourier analysis
Fourier transforms
Geometry
Harmonic analysis
Mathematics
Mathematics and Statistics
Multipliers
title Radial multipliers and restriction to surfaces of the Fourier transform in mixed-norm spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T01%3A43%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radial%20multipliers%20and%20restriction%20to%20surfaces%20of%20the%20Fourier%20transform%20in%20mixed-norm%20spaces&rft.jtitle=Mathematische%20Zeitschrift&rft.au=C%C3%B3rdoba,%20Antonio&rft.date=2017-08-01&rft.volume=286&rft.issue=3-4&rft.spage=1479&rft.epage=1493&rft.pages=1479-1493&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-016-1810-y&rft_dat=%3Cproquest_cross%3E1919129352%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-3dc07fdd1d2246899f425085db9ffc9c780ccf97f4b1ec14a6853e45d5e970253%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1919129352&rft_id=info:pmid/&rfr_iscdi=true