Loading…

On 2-adic deformations

We compute the versal deformation ring of a split generic 2-dimensional representation χ 1 ⊕ χ 2 of the absolute Galois group of Q p . As an application, we show that the Breuil–Mézard conjecture for both non-split extensions of χ 1 by χ 2 and χ 2 by χ 1 implies the Breuil–Mézard conjecture for χ 1...

Full description

Saved in:
Bibliographic Details
Published in:Mathematische Zeitschrift 2017-08, Vol.286 (3-4), p.801-819
Main Author: Paškūnas, Vytautas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-f306c8b274b41c36b539770017e5e600057375dd25558e7ad1efcdf81487fd363
cites cdi_FETCH-LOGICAL-c316t-f306c8b274b41c36b539770017e5e600057375dd25558e7ad1efcdf81487fd363
container_end_page 819
container_issue 3-4
container_start_page 801
container_title Mathematische Zeitschrift
container_volume 286
creator Paškūnas, Vytautas
description We compute the versal deformation ring of a split generic 2-dimensional representation χ 1 ⊕ χ 2 of the absolute Galois group of Q p . As an application, we show that the Breuil–Mézard conjecture for both non-split extensions of χ 1 by χ 2 and χ 2 by χ 1 implies the Breuil–Mézard conjecture for χ 1 ⊕ χ 2 . The result is new for p = 2 , the proof works for all primes.
doi_str_mv 10.1007/s00209-016-1785-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1919129407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919129407</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-f306c8b274b41c36b539770017e5e600057375dd25558e7ad1efcdf81487fd363</originalsourceid><addsrcrecordid>eNp1j7tPwzAQxi0EEqGwIrFVYjbc-XXOiCpeUqUuMFtJbKNUNCl2OvDf4yoMLOiGb_gepx9jNwh3CED3GUBAzQENR7Ka2xNWoZKCoxXylFXF1lxbUufsIuctQDFJVex6MywFb3zfLX2IY9o1Uz8O-ZKdxeYzh6tfXbD3p8e31Qtfb55fVw9r3kk0E48STGdbQapV2EnTalkTlXEKOhgA0CRJey-01jZQ4zHEzkeLylL00sgFu51392n8OoQ8ue14SEN56bAuJ2oFVFI4p7o05pxCdPvU75r07RDcEd_N-K7guyO-s6Uj5k4u2eEjpD_L_5Z-ALGvWWA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919129407</pqid></control><display><type>article</type><title>On 2-adic deformations</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Paškūnas, Vytautas</creator><creatorcontrib>Paškūnas, Vytautas</creatorcontrib><description>We compute the versal deformation ring of a split generic 2-dimensional representation χ 1 ⊕ χ 2 of the absolute Galois group of Q p . As an application, we show that the Breuil–Mézard conjecture for both non-split extensions of χ 1 by χ 2 and χ 2 by χ 1 implies the Breuil–Mézard conjecture for χ 1 ⊕ χ 2 . The result is new for p = 2 , the proof works for all primes.</description><identifier>ISSN: 0025-5874</identifier><identifier>EISSN: 1432-1823</identifier><identifier>DOI: 10.1007/s00209-016-1785-8</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Deformation ; Mathematics ; Mathematics and Statistics ; Proving</subject><ispartof>Mathematische Zeitschrift, 2017-08, Vol.286 (3-4), p.801-819</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-f306c8b274b41c36b539770017e5e600057375dd25558e7ad1efcdf81487fd363</citedby><cites>FETCH-LOGICAL-c316t-f306c8b274b41c36b539770017e5e600057375dd25558e7ad1efcdf81487fd363</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Paškūnas, Vytautas</creatorcontrib><title>On 2-adic deformations</title><title>Mathematische Zeitschrift</title><addtitle>Math. Z</addtitle><description>We compute the versal deformation ring of a split generic 2-dimensional representation χ 1 ⊕ χ 2 of the absolute Galois group of Q p . As an application, we show that the Breuil–Mézard conjecture for both non-split extensions of χ 1 by χ 2 and χ 2 by χ 1 implies the Breuil–Mézard conjecture for χ 1 ⊕ χ 2 . The result is new for p = 2 , the proof works for all primes.</description><subject>Deformation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Proving</subject><issn>0025-5874</issn><issn>1432-1823</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1j7tPwzAQxi0EEqGwIrFVYjbc-XXOiCpeUqUuMFtJbKNUNCl2OvDf4yoMLOiGb_gepx9jNwh3CED3GUBAzQENR7Ka2xNWoZKCoxXylFXF1lxbUufsIuctQDFJVex6MywFb3zfLX2IY9o1Uz8O-ZKdxeYzh6tfXbD3p8e31Qtfb55fVw9r3kk0E48STGdbQapV2EnTalkTlXEKOhgA0CRJey-01jZQ4zHEzkeLylL00sgFu51392n8OoQ8ue14SEN56bAuJ2oFVFI4p7o05pxCdPvU75r07RDcEd_N-K7guyO-s6Uj5k4u2eEjpD_L_5Z-ALGvWWA</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Paškūnas, Vytautas</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170801</creationdate><title>On 2-adic deformations</title><author>Paškūnas, Vytautas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-f306c8b274b41c36b539770017e5e600057375dd25558e7ad1efcdf81487fd363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Deformation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Proving</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paškūnas, Vytautas</creatorcontrib><collection>CrossRef</collection><jtitle>Mathematische Zeitschrift</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paškūnas, Vytautas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On 2-adic deformations</atitle><jtitle>Mathematische Zeitschrift</jtitle><stitle>Math. Z</stitle><date>2017-08-01</date><risdate>2017</risdate><volume>286</volume><issue>3-4</issue><spage>801</spage><epage>819</epage><pages>801-819</pages><issn>0025-5874</issn><eissn>1432-1823</eissn><abstract>We compute the versal deformation ring of a split generic 2-dimensional representation χ 1 ⊕ χ 2 of the absolute Galois group of Q p . As an application, we show that the Breuil–Mézard conjecture for both non-split extensions of χ 1 by χ 2 and χ 2 by χ 1 implies the Breuil–Mézard conjecture for χ 1 ⊕ χ 2 . The result is new for p = 2 , the proof works for all primes.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s00209-016-1785-8</doi><tpages>19</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0025-5874
ispartof Mathematische Zeitschrift, 2017-08, Vol.286 (3-4), p.801-819
issn 0025-5874
1432-1823
language eng
recordid cdi_proquest_journals_1919129407
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Deformation
Mathematics
Mathematics and Statistics
Proving
title On 2-adic deformations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-22T18%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%202-adic%20deformations&rft.jtitle=Mathematische%20Zeitschrift&rft.au=Pa%C5%A1k%C5%ABnas,%20Vytautas&rft.date=2017-08-01&rft.volume=286&rft.issue=3-4&rft.spage=801&rft.epage=819&rft.pages=801-819&rft.issn=0025-5874&rft.eissn=1432-1823&rft_id=info:doi/10.1007/s00209-016-1785-8&rft_dat=%3Cproquest_cross%3E1919129407%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-f306c8b274b41c36b539770017e5e600057375dd25558e7ad1efcdf81487fd363%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1919129407&rft_id=info:pmid/&rfr_iscdi=true