Loading…

Optimal cooling intervention for construction workers in a hot and humid environment

This study aims to determine the optimal cooling intervention of a newly designed hybrid cooling vest. 10 males participated in three random experiments, i.e., cooling vest worn during exercise and recovery (ALL-COOL), cooling vest worn during passive recovery (REC-COOL) and control (CON) in a clima...

Full description

Saved in:
Bibliographic Details
Published in:Building and environment 2017-06, Vol.118, p.91-100
Main Authors: Yi, Wen, Zhao, Yijie, Chan, Albert P.C., Lam, Edmond W.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This study aims to determine the optimal cooling intervention of a newly designed hybrid cooling vest. 10 males participated in three random experiments, i.e., cooling vest worn during exercise and recovery (ALL-COOL), cooling vest worn during passive recovery (REC-COOL) and control (CON) in a climatic chamber controlled at 37 °C temperature, 60% relative humidity, 0.3 m/s air velocity, and 450 W/m2 solar radiation to simulate the summer working environment of construction sites. The work–rest protocol was adopted to compare the effectiveness of ALL-COOL and REC-COOL. Physiological (core temperature, skin temperature, and heart rate) and perceptual (ratings of perceived exertion, thermal sensation, and wetness sensation) parameters were measured during the entire heat exposure. The cooling vest worn during exercise improved thermal comfort but did not alleviate heat strain or prolong work duration, as shown by the significant reduction in skin temperature and thermal sensation in ALL-COOL compared with CON (p 
ISSN:0360-1323
1873-684X
DOI:10.1016/j.buildenv.2017.03.032