Loading…

Open‐Structured V2O5·nH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries

The high‐capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and p...

Full description

Saved in:
Bibliographic Details
Published in:Advanced energy materials 2017-07, Vol.7 (14), p.n/a
Main Authors: Wang, Huali, Bi, Xuanxuan, Bai, Ying, Wu, Chuan, Gu, Sichen, Chen, Shi, Wu, Feng, Amine, Khalil, Lu, Jun
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page n/a
container_issue 14
container_start_page
container_title Advanced energy materials
container_volume 7
creator Wang, Huali
Bi, Xuanxuan
Bai, Ying
Wu, Chuan
Gu, Sichen
Chen, Shi
Wu, Feng
Amine, Khalil
Lu, Jun
description The high‐capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·nH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g−1 in a Li‐ion cell, 110 mA h g−1 in a Na‐ion cell, and 80 mA h g−1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles. A binder‐free V2O5·nH2O nanoflake cathode, prepared by a simple hydrothermal method, shows decent cyclability and capacity retention for Li+, Na+, and Al3+ insertion/deinsertion. Water molecules in the oxide network lead to a good ion mobility because of the electrostatic shielding effect. The water‐deficient V2O5·0.3H2O shows fast kinetics benefiting from the large interlayer spacing and its 3D open structure.
doi_str_mv 10.1002/aenm.201602720
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1919960658</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1919960658</sourcerecordid><originalsourceid>FETCH-LOGICAL-g1870-dc3ca1323af9497e277a2cb41ed12b6992f2492fb40708be925dd65a61bc62463</originalsourceid><addsrcrecordid>eNo9kM9OwkAQxhujiQS5et7EM7i7bbfdIxIUEkoT_12baTuF4rLF7RbDzYMP4Nt491F8EksgzGFmvuSbb5Kf41wzOmCU8ltAvR5wygTlAadnTocJ5vVF6NHz0-7yS6dX1yvalicZdd2O8xVvUP99fj9Z02S2MZiTVx77vz96wmMyB10VCt6wJlCTSblYqh15xC2aukwVkhHYZZUjicCiKUGRojIkqnS1BYXaEtA5iRply6Oe6taXgQJbVprcgd2fYX3lXBSgauwdZ9d5uR8_jyb9WfwwHQ1n_QULA9rPMzcD5nIXCunJAHkQAM9Sj2HOeCqk5AX32pZ6NKBhipL7eS58ECzNBPeE23VuDrkbU703WNtkVTVGty8TJpmUggo_bF3y4PooFe6SjSnXYHYJo8medLInnZxIJ8PxPDop9x8YjHcM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1919960658</pqid></control><display><type>article</type><title>Open‐Structured V2O5·nH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wang, Huali ; Bi, Xuanxuan ; Bai, Ying ; Wu, Chuan ; Gu, Sichen ; Chen, Shi ; Wu, Feng ; Amine, Khalil ; Lu, Jun</creator><creatorcontrib>Wang, Huali ; Bi, Xuanxuan ; Bai, Ying ; Wu, Chuan ; Gu, Sichen ; Chen, Shi ; Wu, Feng ; Amine, Khalil ; Lu, Jun</creatorcontrib><description>The high‐capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·nH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g−1 in a Li‐ion cell, 110 mA h g−1 in a Na‐ion cell, and 80 mA h g−1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles. A binder‐free V2O5·nH2O nanoflake cathode, prepared by a simple hydrothermal method, shows decent cyclability and capacity retention for Li+, Na+, and Al3+ insertion/deinsertion. Water molecules in the oxide network lead to a good ion mobility because of the electrostatic shielding effect. The water‐deficient V2O5·0.3H2O shows fast kinetics benefiting from the large interlayer spacing and its 3D open structure.</description><identifier>ISSN: 1614-6832</identifier><identifier>EISSN: 1614-6840</identifier><identifier>DOI: 10.1002/aenm.201602720</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Aluminum-ion batteries ; Al‐ion batteries ; Battery cycles ; Cathodes ; Electrochemical analysis ; Electrode materials ; Intercalation ; Lithium-ion batteries ; Li‐ion batteries ; Nanostructure ; Na‐ion batteries ; Rechargeable batteries ; Self-assembly ; Stainless steels ; Structural stability ; V2O5·nH2O nanoflakes ; Vanadium pentoxide</subject><ispartof>Advanced energy materials, 2017-07, Vol.7 (14), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-0858-8577</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Wang, Huali</creatorcontrib><creatorcontrib>Bi, Xuanxuan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><creatorcontrib>Gu, Sichen</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><title>Open‐Structured V2O5·nH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries</title><title>Advanced energy materials</title><description>The high‐capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·nH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g−1 in a Li‐ion cell, 110 mA h g−1 in a Na‐ion cell, and 80 mA h g−1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles. A binder‐free V2O5·nH2O nanoflake cathode, prepared by a simple hydrothermal method, shows decent cyclability and capacity retention for Li+, Na+, and Al3+ insertion/deinsertion. Water molecules in the oxide network lead to a good ion mobility because of the electrostatic shielding effect. The water‐deficient V2O5·0.3H2O shows fast kinetics benefiting from the large interlayer spacing and its 3D open structure.</description><subject>Aluminum-ion batteries</subject><subject>Al‐ion batteries</subject><subject>Battery cycles</subject><subject>Cathodes</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Intercalation</subject><subject>Lithium-ion batteries</subject><subject>Li‐ion batteries</subject><subject>Nanostructure</subject><subject>Na‐ion batteries</subject><subject>Rechargeable batteries</subject><subject>Self-assembly</subject><subject>Stainless steels</subject><subject>Structural stability</subject><subject>V2O5·nH2O nanoflakes</subject><subject>Vanadium pentoxide</subject><issn>1614-6832</issn><issn>1614-6840</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kM9OwkAQxhujiQS5et7EM7i7bbfdIxIUEkoT_12baTuF4rLF7RbDzYMP4Nt491F8EksgzGFmvuSbb5Kf41wzOmCU8ltAvR5wygTlAadnTocJ5vVF6NHz0-7yS6dX1yvalicZdd2O8xVvUP99fj9Z02S2MZiTVx77vz96wmMyB10VCt6wJlCTSblYqh15xC2aukwVkhHYZZUjicCiKUGRojIkqnS1BYXaEtA5iRply6Oe6taXgQJbVprcgd2fYX3lXBSgauwdZ9d5uR8_jyb9WfwwHQ1n_QULA9rPMzcD5nIXCunJAHkQAM9Sj2HOeCqk5AX32pZ6NKBhipL7eS58ECzNBPeE23VuDrkbU703WNtkVTVGty8TJpmUggo_bF3y4PooFe6SjSnXYHYJo8medLInnZxIJ8PxPDop9x8YjHcM</recordid><startdate>20170719</startdate><enddate>20170719</enddate><creator>Wang, Huali</creator><creator>Bi, Xuanxuan</creator><creator>Bai, Ying</creator><creator>Wu, Chuan</creator><creator>Gu, Sichen</creator><creator>Chen, Shi</creator><creator>Wu, Feng</creator><creator>Amine, Khalil</creator><creator>Lu, Jun</creator><general>Wiley Subscription Services, Inc</general><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid></search><sort><creationdate>20170719</creationdate><title>Open‐Structured V2O5·nH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries</title><author>Wang, Huali ; Bi, Xuanxuan ; Bai, Ying ; Wu, Chuan ; Gu, Sichen ; Chen, Shi ; Wu, Feng ; Amine, Khalil ; Lu, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-g1870-dc3ca1323af9497e277a2cb41ed12b6992f2492fb40708be925dd65a61bc62463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Aluminum-ion batteries</topic><topic>Al‐ion batteries</topic><topic>Battery cycles</topic><topic>Cathodes</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Intercalation</topic><topic>Lithium-ion batteries</topic><topic>Li‐ion batteries</topic><topic>Nanostructure</topic><topic>Na‐ion batteries</topic><topic>Rechargeable batteries</topic><topic>Self-assembly</topic><topic>Stainless steels</topic><topic>Structural stability</topic><topic>V2O5·nH2O nanoflakes</topic><topic>Vanadium pentoxide</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Huali</creatorcontrib><creatorcontrib>Bi, Xuanxuan</creatorcontrib><creatorcontrib>Bai, Ying</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><creatorcontrib>Gu, Sichen</creatorcontrib><creatorcontrib>Chen, Shi</creatorcontrib><creatorcontrib>Wu, Feng</creatorcontrib><creatorcontrib>Amine, Khalil</creatorcontrib><creatorcontrib>Lu, Jun</creatorcontrib><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced energy materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Huali</au><au>Bi, Xuanxuan</au><au>Bai, Ying</au><au>Wu, Chuan</au><au>Gu, Sichen</au><au>Chen, Shi</au><au>Wu, Feng</au><au>Amine, Khalil</au><au>Lu, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Open‐Structured V2O5·nH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries</atitle><jtitle>Advanced energy materials</jtitle><date>2017-07-19</date><risdate>2017</risdate><volume>7</volume><issue>14</issue><epage>n/a</epage><issn>1614-6832</issn><eissn>1614-6840</eissn><abstract>The high‐capacity cathode material V2O5·nH2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·nH2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g−1 in a Li‐ion cell, 110 mA h g−1 in a Na‐ion cell, and 80 mA h g−1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles. A binder‐free V2O5·nH2O nanoflake cathode, prepared by a simple hydrothermal method, shows decent cyclability and capacity retention for Li+, Na+, and Al3+ insertion/deinsertion. Water molecules in the oxide network lead to a good ion mobility because of the electrostatic shielding effect. The water‐deficient V2O5·0.3H2O shows fast kinetics benefiting from the large interlayer spacing and its 3D open structure.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/aenm.201602720</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-0858-8577</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1614-6832
ispartof Advanced energy materials, 2017-07, Vol.7 (14), p.n/a
issn 1614-6832
1614-6840
language eng
recordid cdi_proquest_journals_1919960658
source Wiley-Blackwell Read & Publish Collection
subjects Aluminum-ion batteries
Al‐ion batteries
Battery cycles
Cathodes
Electrochemical analysis
Electrode materials
Intercalation
Lithium-ion batteries
Li‐ion batteries
Nanostructure
Na‐ion batteries
Rechargeable batteries
Self-assembly
Stainless steels
Structural stability
V2O5·nH2O nanoflakes
Vanadium pentoxide
title Open‐Structured V2O5·nH2O Nanoflakes as Highly Reversible Cathode Material for Monovalent and Multivalent Intercalation Batteries
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A00%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Open%E2%80%90Structured%20V2O5%C2%B7nH2O%20Nanoflakes%20as%20Highly%20Reversible%20Cathode%20Material%20for%20Monovalent%20and%20Multivalent%20Intercalation%20Batteries&rft.jtitle=Advanced%20energy%20materials&rft.au=Wang,%20Huali&rft.date=2017-07-19&rft.volume=7&rft.issue=14&rft.epage=n/a&rft.issn=1614-6832&rft.eissn=1614-6840&rft_id=info:doi/10.1002/aenm.201602720&rft_dat=%3Cproquest_wiley%3E1919960658%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-g1870-dc3ca1323af9497e277a2cb41ed12b6992f2492fb40708be925dd65a61bc62463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1919960658&rft_id=info:pmid/&rfr_iscdi=true