Loading…

Facile Synthesis of Nitrogen-Doped Graphene Aerogels for Electrode Materials in Supercapacitors

Three-dimensional porous nitrogen-doped graphene aerogels (NGAs) were synthesized by using graphene oxide (GO) and chitosan (CS) via a self-assembly process by one-pot hydrothermal method. The morphology and struc- ture of the as-prepared materials were characterized by means of scanning electron mi...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of chemistry 2017-07, Vol.35 (7), p.1069-1078
Main Authors: Zhang, Yong, Zhu, Jiayi, Ren, Hongbo, Bi, Yutie, Zhang, Lin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Three-dimensional porous nitrogen-doped graphene aerogels (NGAs) were synthesized by using graphene oxide (GO) and chitosan (CS) via a self-assembly process by one-pot hydrothermal method. The morphology and struc- ture of the as-prepared materials were characterized by means of scanning electron microscopy, transmission elec- tron microscopy, X-ray diffraction, XPS spectroscopy, Raman spectroscopy, nitrogen adsorption/desorption meas- urement and Fourier transform infrared spectroscopy. The electrochemical performance of NGAs was studied by cyclic voltammetry, galvanostatic charge/discharge and impedance spectroscopy measurements. The microstructure, surface area and capacitance of NGAs could be facilely controlled by adding different amounts of chitosan. The prepared NGA-4 showed a specific capacitance of 148.0 F/g at the discharge current density of 0.5 A/g and also re- tained 95.3% of the initial capacitance after 5000 cycles at the scan rate of 10 mV/s. It provided a possible way to obtain graphene based materials with high surface area and capacitance.
ISSN:1001-604X
1614-7065
DOI:10.1002/cjoc.201600854