Loading…
Mutagenesis‐Independent Stabilization of Class B Flavin Monooxygenases in Operation
This paper describes the stabilization of flavin‐dependent monooxygenases under reaction conditions, using an engineered formulation of additives (the natural cofactors NADPH and FAD, and superoxide dismutase and catalase as catalytic antioxidants). This way, a 103‐ to 104‐fold increase of the half‐...
Saved in:
Published in: | Advanced synthesis & catalysis 2017-06, Vol.359 (12), p.2121-2131 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes the stabilization of flavin‐dependent monooxygenases under reaction conditions, using an engineered formulation of additives (the natural cofactors NADPH and FAD, and superoxide dismutase and catalase as catalytic antioxidants). This way, a 103‐ to 104‐fold increase of the half‐life was reached without resource‐intensive directed evolution or structure‐dependent protein engineering methods. The stabilized enzymes are highly valued for their synthetic potential in biotechnology and medicinal chemistry (enantioselective sulfur, nitrogen and Baeyer–Villiger oxidations; oxidative human metabolism), but widespread application was so far hindered by their notorious fragility. Our technology immediately enables their use, does not require structural knowledge of the biocatalyst, and creates a strong basis for the targeted development of improved variants by mutagenesis. |
---|---|
ISSN: | 1615-4150 1615-4169 |
DOI: | 10.1002/adsc.201700585 |