Loading…

Dual Airgap Stator- and Rotor-Permanent Magnet Machines With Spoke-Type Configurations Using Phase-Group Concentrated Coil Windings

This paper presents an advanced design procedure for stator-based and rotor-based permanent magnet (PM) machines to improve the electromagnetic performance by incorporating the spoke-type magnet configurations, phase-group concentrated coil windings, and an unaligned arrangement of two rotors/stator...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industry applications 2017-07, Vol.53 (4), p.3327-3335
Main Authors: Wenliang Zhao, Dezhi Chen, Lipo, Thomas A., Byung-Il Kwon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an advanced design procedure for stator-based and rotor-based permanent magnet (PM) machines to improve the electromagnetic performance by incorporating the spoke-type magnet configurations, phase-group concentrated coil windings, and an unaligned arrangement of two rotors/stators. The dual-rotor switched flux PM machine (SFPMM), designated as the stator-PM machine, and the dual-stator spoke-type interior PM machine (S-IPMM), termed the rotor-PM machine, are designed by the proposed design procedure to obtain high torque density and low pulsating torques for direct-drive applications. A quantitative comparison is performed between the proposed SFPMM and S-IPMM, and a conventional SFPMM with concentrated windings is adopted as the referenced model to evaluate the contribution of the proposed design procedure. The machine performance including back electromotive force, cogging torque, and electromagnetic torque is first analyzed by a finite element method under the same operating conditions. Finally, a prototype of the dual-stator S-IPMM is manufactured, and some key simulation results are verified by the experimental tests.
ISSN:0093-9994
1939-9367
DOI:10.1109/TIA.2017.2681618