Loading…

Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy

Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA pac...

Full description

Saved in:
Bibliographic Details
Published in:Angewandte Chemie 2017-08, Vol.129 (32), p.9504-9508
Main Authors: Sun, Yang, Di, Weishuai, Li, Yiran, Huang, Wenmao, Wang, Xin, Qin, Meng, Wang, Wei, Cao, Yi
Format: Article
Language:eng ; jpn
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 9508
container_issue 32
container_start_page 9504
container_title Angewandte Chemie
container_volume 129
creator Sun, Yang
Di, Weishuai
Li, Yiran
Huang, Wenmao
Wang, Xin
Qin, Meng
Wang, Wei
Cao, Yi
description Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. Eine RNA‐Dreiwegekreuzung (3WJ‐pRNA) weist abhängig von der Kraftrichtung Entfaltungskräfte zwischen 47 und 219 pN auf. Diese mechanische Anisotropie hat ihren Ursprung in der unterschiedlichen Kooperativität für das Aufbrechen zweier Mg2+‐Bindestellen. Es ist vorstellbar, dass 3WJ‐pRNA für den Aufbau von Biomaterialien mit einstellbarer mechanischer Anisotropie genutzt werden kann.
doi_str_mv 10.1002/ange.201704113
format article
fullrecord <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1923614116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923614116</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1443-d773f4f165d7c0d1f062960a01fb6cd13b928af6434dae8cd094fb1f0ce13adc3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKe3Xge8lM6kydr1sky3KduEbeJlSJOTrqOmtR9Kb8Sf4G_0l5gx2c15OfDwnsOD0DUlA0qIfydtCgOf0JBwStkJ6tGhTz0WDsNT1COEc2_k8-gcXdT1jhAS-GHUQ1-L1L_9_f65hxKsBtvgWZZu8QLUVtpMyRzHNquLpirKDhcGb7YVgONfZefmU2tVkxUWl6tljGWNV_ABMgeNkw6vM5vme3ZR5KDaHPCkqBTgdQnK9dXKVV6iMyPzGq7-s49eJg-b8cybP08fx_Hc21HOmafDkBluaDDUoSKaGvd9FBBJqEkCpSlLIn8kTcAZ1xJGSpOIm8RhCiiTWrE-ujn0llXx3kLdiF3RVtadFDTyWUCdssBR0YH6zHLoRFllb7LqBCViL1jsBYujYBEvpw_Hjf0Bh192Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923614116</pqid></control><display><type>article</type><title>Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Sun, Yang ; Di, Weishuai ; Li, Yiran ; Huang, Wenmao ; Wang, Xin ; Qin, Meng ; Wang, Wei ; Cao, Yi</creator><creatorcontrib>Sun, Yang ; Di, Weishuai ; Li, Yiran ; Huang, Wenmao ; Wang, Xin ; Qin, Meng ; Wang, Wei ; Cao, Yi</creatorcontrib><description>Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. Eine RNA‐Dreiwegekreuzung (3WJ‐pRNA) weist abhängig von der Kraftrichtung Entfaltungskräfte zwischen 47 und 219 pN auf. Diese mechanische Anisotropie hat ihren Ursprung in der unterschiedlichen Kooperativität für das Aufbrechen zweier Mg2+‐Bindestellen. Es ist vorstellbar, dass 3WJ‐pRNA für den Aufbau von Biomaterialien mit einstellbarer mechanischer Anisotropie genutzt werden kann.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201704113</identifier><language>eng ; jpn</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloys ; Anisotropy ; Binding sites ; Biomaterialiendesign ; Biomaterials ; Biomedical materials ; Chemistry ; Construction ; Deoxyribonucleic acid ; DNA ; Engineering ; Magnesium ; Mechanical analysis ; Mechanische Anisotropie ; Motor task performance ; Packaging ; pRNA ; Rasterkraftmikroskopie ; Rupture ; Rupturing ; Spectroscopy ; Surgical implants ; Tissues</subject><ispartof>Angewandte Chemie, 2017-08, Vol.129 (32), p.9504-9508</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1493-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Di, Weishuai</creatorcontrib><creatorcontrib>Li, Yiran</creatorcontrib><creatorcontrib>Huang, Wenmao</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qin, Meng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Cao, Yi</creatorcontrib><title>Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy</title><title>Angewandte Chemie</title><description>Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. Eine RNA‐Dreiwegekreuzung (3WJ‐pRNA) weist abhängig von der Kraftrichtung Entfaltungskräfte zwischen 47 und 219 pN auf. Diese mechanische Anisotropie hat ihren Ursprung in der unterschiedlichen Kooperativität für das Aufbrechen zweier Mg2+‐Bindestellen. Es ist vorstellbar, dass 3WJ‐pRNA für den Aufbau von Biomaterialien mit einstellbarer mechanischer Anisotropie genutzt werden kann.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Binding sites</subject><subject>Biomaterialiendesign</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Construction</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Engineering</subject><subject>Magnesium</subject><subject>Mechanical analysis</subject><subject>Mechanische Anisotropie</subject><subject>Motor task performance</subject><subject>Packaging</subject><subject>pRNA</subject><subject>Rasterkraftmikroskopie</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Spectroscopy</subject><subject>Surgical implants</subject><subject>Tissues</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKe3Xge8lM6kydr1sky3KduEbeJlSJOTrqOmtR9Kb8Sf4G_0l5gx2c15OfDwnsOD0DUlA0qIfydtCgOf0JBwStkJ6tGhTz0WDsNT1COEc2_k8-gcXdT1jhAS-GHUQ1-L1L_9_f65hxKsBtvgWZZu8QLUVtpMyRzHNquLpirKDhcGb7YVgONfZefmU2tVkxUWl6tljGWNV_ABMgeNkw6vM5vme3ZR5KDaHPCkqBTgdQnK9dXKVV6iMyPzGq7-s49eJg-b8cybP08fx_Hc21HOmafDkBluaDDUoSKaGvd9FBBJqEkCpSlLIn8kTcAZ1xJGSpOIm8RhCiiTWrE-ujn0llXx3kLdiF3RVtadFDTyWUCdssBR0YH6zHLoRFllb7LqBCViL1jsBYujYBEvpw_Hjf0Bh192Vg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Sun, Yang</creator><creator>Di, Weishuai</creator><creator>Li, Yiran</creator><creator>Huang, Wenmao</creator><creator>Wang, Xin</creator><creator>Qin, Meng</creator><creator>Wang, Wei</creator><creator>Cao, Yi</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1493-7868</orcidid></search><sort><creationdate>20170801</creationdate><title>Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy</title><author>Sun, Yang ; Di, Weishuai ; Li, Yiran ; Huang, Wenmao ; Wang, Xin ; Qin, Meng ; Wang, Wei ; Cao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1443-d773f4f165d7c0d1f062960a01fb6cd13b928af6434dae8cd094fb1f0ce13adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Binding sites</topic><topic>Biomaterialiendesign</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Construction</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Engineering</topic><topic>Magnesium</topic><topic>Mechanical analysis</topic><topic>Mechanische Anisotropie</topic><topic>Motor task performance</topic><topic>Packaging</topic><topic>pRNA</topic><topic>Rasterkraftmikroskopie</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Spectroscopy</topic><topic>Surgical implants</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Di, Weishuai</creatorcontrib><creatorcontrib>Li, Yiran</creatorcontrib><creatorcontrib>Huang, Wenmao</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qin, Meng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Cao, Yi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yang</au><au>Di, Weishuai</au><au>Li, Yiran</au><au>Huang, Wenmao</au><au>Wang, Xin</au><au>Qin, Meng</au><au>Wang, Wei</au><au>Cao, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy</atitle><jtitle>Angewandte Chemie</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>129</volume><issue>32</issue><spage>9504</spage><epage>9508</epage><pages>9504-9508</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy. Eine RNA‐Dreiwegekreuzung (3WJ‐pRNA) weist abhängig von der Kraftrichtung Entfaltungskräfte zwischen 47 und 219 pN auf. Diese mechanische Anisotropie hat ihren Ursprung in der unterschiedlichen Kooperativität für das Aufbrechen zweier Mg2+‐Bindestellen. Es ist vorstellbar, dass 3WJ‐pRNA für den Aufbau von Biomaterialien mit einstellbarer mechanischer Anisotropie genutzt werden kann.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201704113</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1493-7868</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0044-8249
ispartof Angewandte Chemie, 2017-08, Vol.129 (32), p.9504-9508
issn 0044-8249
1521-3757
language eng ; jpn
recordid cdi_proquest_journals_1923614116
source Wiley-Blackwell Read & Publish Collection
subjects Alloys
Anisotropy
Binding sites
Biomaterialiendesign
Biomaterials
Biomedical materials
Chemistry
Construction
Deoxyribonucleic acid
DNA
Engineering
Magnesium
Mechanical analysis
Mechanische Anisotropie
Motor task performance
Packaging
pRNA
Rasterkraftmikroskopie
Rupture
Rupturing
Spectroscopy
Surgical implants
Tissues
title Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg2+%E2%80%90Dependent%20High%20Mechanical%20Anisotropy%20of%20Three%E2%80%90Way%E2%80%90Junction%20pRNA%20as%20Revealed%20by%20Single%E2%80%90Molecule%20Force%20Spectroscopy&rft.jtitle=Angewandte%20Chemie&rft.au=Sun,%20Yang&rft.date=2017-08-01&rft.volume=129&rft.issue=32&rft.spage=9504&rft.epage=9508&rft.pages=9504-9508&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201704113&rft_dat=%3Cproquest_wiley%3E1923614116%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j1443-d773f4f165d7c0d1f062960a01fb6cd13b928af6434dae8cd094fb1f0ce13adc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923614116&rft_id=info:pmid/&rfr_iscdi=true