Loading…
Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy
Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA pac...
Saved in:
Published in: | Angewandte Chemie 2017-08, Vol.129 (32), p.9504-9508 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | eng ; jpn |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9508 |
container_issue | 32 |
container_start_page | 9504 |
container_title | Angewandte Chemie |
container_volume | 129 |
creator | Sun, Yang Di, Weishuai Li, Yiran Huang, Wenmao Wang, Xin Qin, Meng Wang, Wei Cao, Yi |
description | Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy.
Eine RNA‐Dreiwegekreuzung (3WJ‐pRNA) weist abhängig von der Kraftrichtung Entfaltungskräfte zwischen 47 und 219 pN auf. Diese mechanische Anisotropie hat ihren Ursprung in der unterschiedlichen Kooperativität für das Aufbrechen zweier Mg2+‐Bindestellen. Es ist vorstellbar, dass 3WJ‐pRNA für den Aufbau von Biomaterialien mit einstellbarer mechanischer Anisotropie genutzt werden kann. |
doi_str_mv | 10.1002/ange.201704113 |
format | article |
fullrecord | <record><control><sourceid>proquest_wiley</sourceid><recordid>TN_cdi_proquest_journals_1923614116</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1923614116</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1443-d773f4f165d7c0d1f062960a01fb6cd13b928af6434dae8cd094fb1f0ce13adc3</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKe3Xge8lM6kydr1sky3KduEbeJlSJOTrqOmtR9Kb8Sf4G_0l5gx2c15OfDwnsOD0DUlA0qIfydtCgOf0JBwStkJ6tGhTz0WDsNT1COEc2_k8-gcXdT1jhAS-GHUQ1-L1L_9_f65hxKsBtvgWZZu8QLUVtpMyRzHNquLpirKDhcGb7YVgONfZefmU2tVkxUWl6tljGWNV_ABMgeNkw6vM5vme3ZR5KDaHPCkqBTgdQnK9dXKVV6iMyPzGq7-s49eJg-b8cybP08fx_Hc21HOmafDkBluaDDUoSKaGvd9FBBJqEkCpSlLIn8kTcAZ1xJGSpOIm8RhCiiTWrE-ujn0llXx3kLdiF3RVtadFDTyWUCdssBR0YH6zHLoRFllb7LqBCViL1jsBYujYBEvpw_Hjf0Bh192Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1923614116</pqid></control><display><type>article</type><title>Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Sun, Yang ; Di, Weishuai ; Li, Yiran ; Huang, Wenmao ; Wang, Xin ; Qin, Meng ; Wang, Wei ; Cao, Yi</creator><creatorcontrib>Sun, Yang ; Di, Weishuai ; Li, Yiran ; Huang, Wenmao ; Wang, Xin ; Qin, Meng ; Wang, Wei ; Cao, Yi</creatorcontrib><description>Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy.
Eine RNA‐Dreiwegekreuzung (3WJ‐pRNA) weist abhängig von der Kraftrichtung Entfaltungskräfte zwischen 47 und 219 pN auf. Diese mechanische Anisotropie hat ihren Ursprung in der unterschiedlichen Kooperativität für das Aufbrechen zweier Mg2+‐Bindestellen. Es ist vorstellbar, dass 3WJ‐pRNA für den Aufbau von Biomaterialien mit einstellbarer mechanischer Anisotropie genutzt werden kann.</description><identifier>ISSN: 0044-8249</identifier><identifier>EISSN: 1521-3757</identifier><identifier>DOI: 10.1002/ange.201704113</identifier><language>eng ; jpn</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Alloys ; Anisotropy ; Binding sites ; Biomaterialiendesign ; Biomaterials ; Biomedical materials ; Chemistry ; Construction ; Deoxyribonucleic acid ; DNA ; Engineering ; Magnesium ; Mechanical analysis ; Mechanische Anisotropie ; Motor task performance ; Packaging ; pRNA ; Rasterkraftmikroskopie ; Rupture ; Rupturing ; Spectroscopy ; Surgical implants ; Tissues</subject><ispartof>Angewandte Chemie, 2017-08, Vol.129 (32), p.9504-9508</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0003-1493-7868</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Di, Weishuai</creatorcontrib><creatorcontrib>Li, Yiran</creatorcontrib><creatorcontrib>Huang, Wenmao</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qin, Meng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Cao, Yi</creatorcontrib><title>Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy</title><title>Angewandte Chemie</title><description>Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy.
Eine RNA‐Dreiwegekreuzung (3WJ‐pRNA) weist abhängig von der Kraftrichtung Entfaltungskräfte zwischen 47 und 219 pN auf. Diese mechanische Anisotropie hat ihren Ursprung in der unterschiedlichen Kooperativität für das Aufbrechen zweier Mg2+‐Bindestellen. Es ist vorstellbar, dass 3WJ‐pRNA für den Aufbau von Biomaterialien mit einstellbarer mechanischer Anisotropie genutzt werden kann.</description><subject>Alloys</subject><subject>Anisotropy</subject><subject>Binding sites</subject><subject>Biomaterialiendesign</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Chemistry</subject><subject>Construction</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Engineering</subject><subject>Magnesium</subject><subject>Mechanical analysis</subject><subject>Mechanische Anisotropie</subject><subject>Motor task performance</subject><subject>Packaging</subject><subject>pRNA</subject><subject>Rasterkraftmikroskopie</subject><subject>Rupture</subject><subject>Rupturing</subject><subject>Spectroscopy</subject><subject>Surgical implants</subject><subject>Tissues</subject><issn>0044-8249</issn><issn>1521-3757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kF1LwzAUhoMoOKe3Xge8lM6kydr1sky3KduEbeJlSJOTrqOmtR9Kb8Sf4G_0l5gx2c15OfDwnsOD0DUlA0qIfydtCgOf0JBwStkJ6tGhTz0WDsNT1COEc2_k8-gcXdT1jhAS-GHUQ1-L1L_9_f65hxKsBtvgWZZu8QLUVtpMyRzHNquLpirKDhcGb7YVgONfZefmU2tVkxUWl6tljGWNV_ABMgeNkw6vM5vme3ZR5KDaHPCkqBTgdQnK9dXKVV6iMyPzGq7-s49eJg-b8cybP08fx_Hc21HOmafDkBluaDDUoSKaGvd9FBBJqEkCpSlLIn8kTcAZ1xJGSpOIm8RhCiiTWrE-ujn0llXx3kLdiF3RVtadFDTyWUCdssBR0YH6zHLoRFllb7LqBCViL1jsBYujYBEvpw_Hjf0Bh192Vg</recordid><startdate>20170801</startdate><enddate>20170801</enddate><creator>Sun, Yang</creator><creator>Di, Weishuai</creator><creator>Li, Yiran</creator><creator>Huang, Wenmao</creator><creator>Wang, Xin</creator><creator>Qin, Meng</creator><creator>Wang, Wei</creator><creator>Cao, Yi</creator><general>Wiley Subscription Services, Inc</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1493-7868</orcidid></search><sort><creationdate>20170801</creationdate><title>Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy</title><author>Sun, Yang ; Di, Weishuai ; Li, Yiran ; Huang, Wenmao ; Wang, Xin ; Qin, Meng ; Wang, Wei ; Cao, Yi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1443-d773f4f165d7c0d1f062960a01fb6cd13b928af6434dae8cd094fb1f0ce13adc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; jpn</language><creationdate>2017</creationdate><topic>Alloys</topic><topic>Anisotropy</topic><topic>Binding sites</topic><topic>Biomaterialiendesign</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Chemistry</topic><topic>Construction</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Engineering</topic><topic>Magnesium</topic><topic>Mechanical analysis</topic><topic>Mechanische Anisotropie</topic><topic>Motor task performance</topic><topic>Packaging</topic><topic>pRNA</topic><topic>Rasterkraftmikroskopie</topic><topic>Rupture</topic><topic>Rupturing</topic><topic>Spectroscopy</topic><topic>Surgical implants</topic><topic>Tissues</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yang</creatorcontrib><creatorcontrib>Di, Weishuai</creatorcontrib><creatorcontrib>Li, Yiran</creatorcontrib><creatorcontrib>Huang, Wenmao</creatorcontrib><creatorcontrib>Wang, Xin</creatorcontrib><creatorcontrib>Qin, Meng</creatorcontrib><creatorcontrib>Wang, Wei</creatorcontrib><creatorcontrib>Cao, Yi</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Angewandte Chemie</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yang</au><au>Di, Weishuai</au><au>Li, Yiran</au><au>Huang, Wenmao</au><au>Wang, Xin</au><au>Qin, Meng</au><au>Wang, Wei</au><au>Cao, Yi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy</atitle><jtitle>Angewandte Chemie</jtitle><date>2017-08-01</date><risdate>2017</risdate><volume>129</volume><issue>32</issue><spage>9504</spage><epage>9508</epage><pages>9504-9508</pages><issn>0044-8249</issn><eissn>1521-3757</eissn><abstract>Mechanical anisotropy is ubiquitous in biological tissues but is hard to reproduce in synthetic biomaterials. Developing molecular building blocks with anisotropic mechanical response is the key towards engineering anisotropic biomaterials. The three‐way‐junction (3WJ) pRNA, derived from ϕ29 DNA packaging motor, shows strong mechanical anisotropy upon Mg2+ binding. In the absence of Mg2+, 3WJ‐pRNA is mechanically weak without noticeable mechanical anisotropy. In the presence of Mg2+, the unfolding forces can differ by more than 4‐fold along different pulling directions, ranging from about 47 pN to about 219 pN. Mechanical anisotropy of 3WJ‐pRNA stems from pulling direction dependent cooperativity for the rupture of two Mg2+ binding sites, which is a novel mechanism for the mechanical anisotropy of biomacromolecules. It is anticipated that 3WJ‐pRNA can be used as a key element for the construction of biomaterials with controllable mechanical anisotropy.
Eine RNA‐Dreiwegekreuzung (3WJ‐pRNA) weist abhängig von der Kraftrichtung Entfaltungskräfte zwischen 47 und 219 pN auf. Diese mechanische Anisotropie hat ihren Ursprung in der unterschiedlichen Kooperativität für das Aufbrechen zweier Mg2+‐Bindestellen. Es ist vorstellbar, dass 3WJ‐pRNA für den Aufbau von Biomaterialien mit einstellbarer mechanischer Anisotropie genutzt werden kann.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ange.201704113</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1493-7868</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0044-8249 |
ispartof | Angewandte Chemie, 2017-08, Vol.129 (32), p.9504-9508 |
issn | 0044-8249 1521-3757 |
language | eng ; jpn |
recordid | cdi_proquest_journals_1923614116 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Alloys Anisotropy Binding sites Biomaterialiendesign Biomaterials Biomedical materials Chemistry Construction Deoxyribonucleic acid DNA Engineering Magnesium Mechanical analysis Mechanische Anisotropie Motor task performance Packaging pRNA Rasterkraftmikroskopie Rupture Rupturing Spectroscopy Surgical implants Tissues |
title | Mg2+‐Dependent High Mechanical Anisotropy of Three‐Way‐Junction pRNA as Revealed by Single‐Molecule Force Spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A32%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_wiley&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mg2+%E2%80%90Dependent%20High%20Mechanical%20Anisotropy%20of%20Three%E2%80%90Way%E2%80%90Junction%20pRNA%20as%20Revealed%20by%20Single%E2%80%90Molecule%20Force%20Spectroscopy&rft.jtitle=Angewandte%20Chemie&rft.au=Sun,%20Yang&rft.date=2017-08-01&rft.volume=129&rft.issue=32&rft.spage=9504&rft.epage=9508&rft.pages=9504-9508&rft.issn=0044-8249&rft.eissn=1521-3757&rft_id=info:doi/10.1002/ange.201704113&rft_dat=%3Cproquest_wiley%3E1923614116%3C/proquest_wiley%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-j1443-d773f4f165d7c0d1f062960a01fb6cd13b928af6434dae8cd094fb1f0ce13adc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1923614116&rft_id=info:pmid/&rfr_iscdi=true |