Loading…
On the Application of the Three-Step Approach to Growth Mixture Models
This series of simulation studies evaluate, in the context of applied research settings, the impact of the parameterization of the covariance structure of the growth mixture model (GMM) on the regression coefficient and standard error estimates in the 3-step method. The results show that the 1-step...
Saved in:
Published in: | Structural equation modeling 2017-09, Vol.24 (5), p.714-732 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This series of simulation studies evaluate, in the context of applied research settings, the impact of the parameterization of the covariance structure of the growth mixture model (GMM) on the regression coefficient and standard error estimates in the 3-step method. The results show that the 1-step approach performs better than the 3-step method across the simulation studies. However, the performance of the 3-step method depends slightly or importantly on the parameterization of the GGM from the first step, on the inclusion or not of the predictor at the first step of the analysis, on the population model, and on the type (i.e., logit vs. linear) and size of the regression coefficient estimates. |
---|---|
ISSN: | 1070-5511 1532-8007 |
DOI: | 10.1080/10705511.2017.1322516 |