Loading…
Closed-form evaluation of integrals involving the gamma function
In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integra...
Saved in:
Published in: | Communications in statistics. Theory and methods 2017-09, Vol.46 (17), p.8328-8342 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883 |
container_end_page | 8342 |
container_issue | 17 |
container_start_page | 8328 |
container_title | Communications in statistics. Theory and methods |
container_volume | 46 |
creator | Labib, Richard de Montigny, Simon |
description | In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integrals involving the error function, with application in order statistics. In particular, these results can be used within the framework of reliability theory. |
doi_str_mv | 10.1080/03610926.2016.1179756 |
format | article |
fullrecord | <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1924047132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924047132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd_glDw3JkvadLkNhn-goEXBW8hTZPZ0SYzaSf7723ZvHr63sPzvh88CN0CXgAW-B5TDlgSviAY-AKglCXjZ2gGjJK8APZ5jmYTk0_QJbpKaYsxsFLQGVqu2pBsnbsQu8zudTvovgk-Cy5rfG83UbdpTPvQ7hu_yfovm2101-nMDd5M5DW6cCNjb053jj6eHt9XL_n67fl19bDODRG8z7UFJnCtpSl1Talh1grJDTgjSwO05txJR7DhhabAC0mAWm2KilWmqmoh6BzdHXd3MXwPNvVqG4box5cKJClwUQIlI8WOlIkhpWid2sWm0_GgAKtJlvqTpSZZ6iRr7C2PvcZPJvRPiG2ten1oQ3RRe9MkRf-f-AV47HEV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924047132</pqid></control><display><type>article</type><title>Closed-form evaluation of integrals involving the gamma function</title><source>Taylor and Francis Science and Technology Collection</source><creator>Labib, Richard ; de Montigny, Simon</creator><creatorcontrib>Labib, Richard ; de Montigny, Simon</creatorcontrib><description>In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integrals involving the error function, with application in order statistics. In particular, these results can be used within the framework of reliability theory.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2016.1179756</identifier><language>eng</language><publisher>Philadelphia: Taylor & Francis</publisher><subject>Exact solutions ; Gamma function ; Integrals ; Mathematical analysis ; mean-time-to-failure ; order statistics ; Primary 33B20, Secondary 60K10, 62G30 ; Reliability</subject><ispartof>Communications in statistics. Theory and methods, 2017-09, Vol.46 (17), p.8328-8342</ispartof><rights>2017 Taylor & Francis Group, LLC 2017</rights><rights>2017 Taylor & Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Labib, Richard</creatorcontrib><creatorcontrib>de Montigny, Simon</creatorcontrib><title>Closed-form evaluation of integrals involving the gamma function</title><title>Communications in statistics. Theory and methods</title><description>In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integrals involving the error function, with application in order statistics. In particular, these results can be used within the framework of reliability theory.</description><subject>Exact solutions</subject><subject>Gamma function</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>mean-time-to-failure</subject><subject>order statistics</subject><subject>Primary 33B20, Secondary 60K10, 62G30</subject><subject>Reliability</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd_glDw3JkvadLkNhn-goEXBW8hTZPZ0SYzaSf7723ZvHr63sPzvh88CN0CXgAW-B5TDlgSviAY-AKglCXjZ2gGjJK8APZ5jmYTk0_QJbpKaYsxsFLQGVqu2pBsnbsQu8zudTvovgk-Cy5rfG83UbdpTPvQ7hu_yfovm2101-nMDd5M5DW6cCNjb053jj6eHt9XL_n67fl19bDODRG8z7UFJnCtpSl1Talh1grJDTgjSwO05txJR7DhhabAC0mAWm2KilWmqmoh6BzdHXd3MXwPNvVqG4box5cKJClwUQIlI8WOlIkhpWid2sWm0_GgAKtJlvqTpSZZ6iRr7C2PvcZPJvRPiG2ten1oQ3RRe9MkRf-f-AV47HEV</recordid><startdate>20170902</startdate><enddate>20170902</enddate><creator>Labib, Richard</creator><creator>de Montigny, Simon</creator><general>Taylor & Francis</general><general>Taylor & Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170902</creationdate><title>Closed-form evaluation of integrals involving the gamma function</title><author>Labib, Richard ; de Montigny, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Exact solutions</topic><topic>Gamma function</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>mean-time-to-failure</topic><topic>order statistics</topic><topic>Primary 33B20, Secondary 60K10, 62G30</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labib, Richard</creatorcontrib><creatorcontrib>de Montigny, Simon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labib, Richard</au><au>de Montigny, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-form evaluation of integrals involving the gamma function</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2017-09-02</date><risdate>2017</risdate><volume>46</volume><issue>17</issue><spage>8328</spage><epage>8342</epage><pages>8328-8342</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integrals involving the error function, with application in order statistics. In particular, these results can be used within the framework of reliability theory.</abstract><cop>Philadelphia</cop><pub>Taylor & Francis</pub><doi>10.1080/03610926.2016.1179756</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-0926 |
ispartof | Communications in statistics. Theory and methods, 2017-09, Vol.46 (17), p.8328-8342 |
issn | 0361-0926 1532-415X |
language | eng |
recordid | cdi_proquest_journals_1924047132 |
source | Taylor and Francis Science and Technology Collection |
subjects | Exact solutions Gamma function Integrals Mathematical analysis mean-time-to-failure order statistics Primary 33B20, Secondary 60K10, 62G30 Reliability |
title | Closed-form evaluation of integrals involving the gamma function |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-form%20evaluation%20of%20integrals%20involving%20the%20gamma%20function&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Labib,%20Richard&rft.date=2017-09-02&rft.volume=46&rft.issue=17&rft.spage=8328&rft.epage=8342&rft.pages=8328-8342&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2016.1179756&rft_dat=%3Cproquest_infor%3E1924047132%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1924047132&rft_id=info:pmid/&rfr_iscdi=true |