Loading…

Closed-form evaluation of integrals involving the gamma function

In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integra...

Full description

Saved in:
Bibliographic Details
Published in:Communications in statistics. Theory and methods 2017-09, Vol.46 (17), p.8328-8342
Main Authors: Labib, Richard, de Montigny, Simon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883
container_end_page 8342
container_issue 17
container_start_page 8328
container_title Communications in statistics. Theory and methods
container_volume 46
creator Labib, Richard
de Montigny, Simon
description In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integrals involving the error function, with application in order statistics. In particular, these results can be used within the framework of reliability theory.
doi_str_mv 10.1080/03610926.2016.1179756
format article
fullrecord <record><control><sourceid>proquest_infor</sourceid><recordid>TN_cdi_proquest_journals_1924047132</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924047132</sourcerecordid><originalsourceid>FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883</originalsourceid><addsrcrecordid>eNp9kM9LwzAYhoMoOKd_glDw3JkvadLkNhn-goEXBW8hTZPZ0SYzaSf7723ZvHr63sPzvh88CN0CXgAW-B5TDlgSviAY-AKglCXjZ2gGjJK8APZ5jmYTk0_QJbpKaYsxsFLQGVqu2pBsnbsQu8zudTvovgk-Cy5rfG83UbdpTPvQ7hu_yfovm2101-nMDd5M5DW6cCNjb053jj6eHt9XL_n67fl19bDODRG8z7UFJnCtpSl1Talh1grJDTgjSwO05txJR7DhhabAC0mAWm2KilWmqmoh6BzdHXd3MXwPNvVqG4box5cKJClwUQIlI8WOlIkhpWid2sWm0_GgAKtJlvqTpSZZ6iRr7C2PvcZPJvRPiG2ten1oQ3RRe9MkRf-f-AV47HEV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924047132</pqid></control><display><type>article</type><title>Closed-form evaluation of integrals involving the gamma function</title><source>Taylor and Francis Science and Technology Collection</source><creator>Labib, Richard ; de Montigny, Simon</creator><creatorcontrib>Labib, Richard ; de Montigny, Simon</creatorcontrib><description>In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integrals involving the error function, with application in order statistics. In particular, these results can be used within the framework of reliability theory.</description><identifier>ISSN: 0361-0926</identifier><identifier>EISSN: 1532-415X</identifier><identifier>DOI: 10.1080/03610926.2016.1179756</identifier><language>eng</language><publisher>Philadelphia: Taylor &amp; Francis</publisher><subject>Exact solutions ; Gamma function ; Integrals ; Mathematical analysis ; mean-time-to-failure ; order statistics ; Primary 33B20, Secondary 60K10, 62G30 ; Reliability</subject><ispartof>Communications in statistics. Theory and methods, 2017-09, Vol.46 (17), p.8328-8342</ispartof><rights>2017 Taylor &amp; Francis Group, LLC 2017</rights><rights>2017 Taylor &amp; Francis Group, LLC</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Labib, Richard</creatorcontrib><creatorcontrib>de Montigny, Simon</creatorcontrib><title>Closed-form evaluation of integrals involving the gamma function</title><title>Communications in statistics. Theory and methods</title><description>In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integrals involving the error function, with application in order statistics. In particular, these results can be used within the framework of reliability theory.</description><subject>Exact solutions</subject><subject>Gamma function</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>mean-time-to-failure</subject><subject>order statistics</subject><subject>Primary 33B20, Secondary 60K10, 62G30</subject><subject>Reliability</subject><issn>0361-0926</issn><issn>1532-415X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kM9LwzAYhoMoOKd_glDw3JkvadLkNhn-goEXBW8hTZPZ0SYzaSf7723ZvHr63sPzvh88CN0CXgAW-B5TDlgSviAY-AKglCXjZ2gGjJK8APZ5jmYTk0_QJbpKaYsxsFLQGVqu2pBsnbsQu8zudTvovgk-Cy5rfG83UbdpTPvQ7hu_yfovm2101-nMDd5M5DW6cCNjb053jj6eHt9XL_n67fl19bDODRG8z7UFJnCtpSl1Talh1grJDTgjSwO05txJR7DhhabAC0mAWm2KilWmqmoh6BzdHXd3MXwPNvVqG4box5cKJClwUQIlI8WOlIkhpWid2sWm0_GgAKtJlvqTpSZZ6iRr7C2PvcZPJvRPiG2ten1oQ3RRe9MkRf-f-AV47HEV</recordid><startdate>20170902</startdate><enddate>20170902</enddate><creator>Labib, Richard</creator><creator>de Montigny, Simon</creator><general>Taylor &amp; Francis</general><general>Taylor &amp; Francis Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20170902</creationdate><title>Closed-form evaluation of integrals involving the gamma function</title><author>Labib, Richard ; de Montigny, Simon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Exact solutions</topic><topic>Gamma function</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>mean-time-to-failure</topic><topic>order statistics</topic><topic>Primary 33B20, Secondary 60K10, 62G30</topic><topic>Reliability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Labib, Richard</creatorcontrib><creatorcontrib>de Montigny, Simon</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Communications in statistics. Theory and methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Labib, Richard</au><au>de Montigny, Simon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Closed-form evaluation of integrals involving the gamma function</atitle><jtitle>Communications in statistics. Theory and methods</jtitle><date>2017-09-02</date><risdate>2017</risdate><volume>46</volume><issue>17</issue><spage>8328</spage><epage>8342</epage><pages>8328-8342</pages><issn>0361-0926</issn><eissn>1532-415X</eissn><abstract>In this article, we obtain simplified as well as original closed-form expressions for integrals involving the gamma function. These explicit results are found neither in the literature nor using symbolic computation software. Subsequent results follow, giving rise to explicit expressions for integrals involving the error function, with application in order statistics. In particular, these results can be used within the framework of reliability theory.</abstract><cop>Philadelphia</cop><pub>Taylor &amp; Francis</pub><doi>10.1080/03610926.2016.1179756</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-0926
ispartof Communications in statistics. Theory and methods, 2017-09, Vol.46 (17), p.8328-8342
issn 0361-0926
1532-415X
language eng
recordid cdi_proquest_journals_1924047132
source Taylor and Francis Science and Technology Collection
subjects Exact solutions
Gamma function
Integrals
Mathematical analysis
mean-time-to-failure
order statistics
Primary 33B20, Secondary 60K10, 62G30
Reliability
title Closed-form evaluation of integrals involving the gamma function
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A24%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_infor&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Closed-form%20evaluation%20of%20integrals%20involving%20the%20gamma%20function&rft.jtitle=Communications%20in%20statistics.%20Theory%20and%20methods&rft.au=Labib,%20Richard&rft.date=2017-09-02&rft.volume=46&rft.issue=17&rft.spage=8328&rft.epage=8342&rft.pages=8328-8342&rft.issn=0361-0926&rft.eissn=1532-415X&rft_id=info:doi/10.1080/03610926.2016.1179756&rft_dat=%3Cproquest_infor%3E1924047132%3C/proquest_infor%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c286t-ae1580da9c7ad33c5ee896c1fc97c13d66f9f20c64a31649213eac4b5bcbbd883%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1924047132&rft_id=info:pmid/&rfr_iscdi=true