Loading…

Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy

Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional...

Full description

Saved in:
Bibliographic Details
Published in:npj quantum information 2020-09, Vol.6 (1), Article 79
Main Authors: Kong, Xi, Zhou, Leixin, Li, Zhijie, Yang, Zhiping, Qiu, Bensheng, Wu, Xiaodong, Shi, Fazhan, Du, Jiangfeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3
cites cdi_FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3
container_end_page
container_issue 1
container_start_page
container_title npj quantum information
container_volume 6
creator Kong, Xi
Zhou, Leixin
Li, Zhijie
Yang, Zhiping
Qiu, Bensheng
Wu, Xiaodong
Shi, Fazhan
Du, Jiangfeng
description Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.
doi_str_mv 10.1038/s41534-020-00311-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1924545043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924545043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EElXpH2CKxGzwM03GquIlVWKB2XKc6-IqdYLtCLW_HpcwdGE6d_jO0bkHoVtK7inh1UMUVHKBCSOYEE4pPl6gGSOyxCWvlpdn9zVaxLgjhNCaVUzQGWpWITnrjNNd4XyCrnNb8AYK8J86a1uk7x63bg8-ut5nymvfR6M7KPxoOtCh2Outh-RMESBm5OSOA5gUMtcPhxt0ZXUXYfGnc_Tx9Pi-fsGbt-fX9WqDDS95wuZUy-jSVlLU3LRlXdecyaqxUoMWwrKmYZa3y1IICUQCE6JatkA5qcHQhs_R3ZQ7hP5rhJjUrh9DrhxVfldIIYngmWITZXK9GMCqIbi9DgdFiTrNqaY5VZ5T_c6pjtnEJ1PMsN9COIv-3_UDrrh6KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924545043</pqid></control><display><type>article</type><title>Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kong, Xi ; Zhou, Leixin ; Li, Zhijie ; Yang, Zhiping ; Qiu, Bensheng ; Wu, Xiaodong ; Shi, Fazhan ; Du, Jiangfeng</creator><creatorcontrib>Kong, Xi ; Zhou, Leixin ; Li, Zhijie ; Yang, Zhiping ; Qiu, Bensheng ; Wu, Xiaodong ; Shi, Fazhan ; Du, Jiangfeng</creatorcontrib><description>Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-020-00311-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1042 ; 639/766/483/1255 ; Artificial intelligence ; Classical and Quantum Gravitation ; Environmental effects ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Quantum theory ; Relativity Theory ; Spintronics ; String Theory</subject><ispartof>npj quantum information, 2020-09, Vol.6 (1), Article 79</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3</citedby><cites>FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3</cites><orcidid>0000-0001-8085-8012 ; 0000-0003-3312-5566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1924545043/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1924545043?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kong, Xi</creatorcontrib><creatorcontrib>Zhou, Leixin</creatorcontrib><creatorcontrib>Li, Zhijie</creatorcontrib><creatorcontrib>Yang, Zhiping</creatorcontrib><creatorcontrib>Qiu, Bensheng</creatorcontrib><creatorcontrib>Wu, Xiaodong</creatorcontrib><creatorcontrib>Shi, Fazhan</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><title>Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.</description><subject>639/705/1042</subject><subject>639/766/483/1255</subject><subject>Artificial intelligence</subject><subject>Classical and Quantum Gravitation</subject><subject>Environmental effects</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kDtPwzAUhS0EElXpH2CKxGzwM03GquIlVWKB2XKc6-IqdYLtCLW_HpcwdGE6d_jO0bkHoVtK7inh1UMUVHKBCSOYEE4pPl6gGSOyxCWvlpdn9zVaxLgjhNCaVUzQGWpWITnrjNNd4XyCrnNb8AYK8J86a1uk7x63bg8-ut5nymvfR6M7KPxoOtCh2Outh-RMESBm5OSOA5gUMtcPhxt0ZXUXYfGnc_Tx9Pi-fsGbt-fX9WqDDS95wuZUy-jSVlLU3LRlXdecyaqxUoMWwrKmYZa3y1IICUQCE6JatkA5qcHQhs_R3ZQ7hP5rhJjUrh9DrhxVfldIIYngmWITZXK9GMCqIbi9DgdFiTrNqaY5VZ5T_c6pjtnEJ1PMsN9COIv-3_UDrrh6KQ</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Kong, Xi</creator><creator>Zhou, Leixin</creator><creator>Li, Zhijie</creator><creator>Yang, Zhiping</creator><creator>Qiu, Bensheng</creator><creator>Wu, Xiaodong</creator><creator>Shi, Fazhan</creator><creator>Du, Jiangfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8085-8012</orcidid><orcidid>https://orcid.org/0000-0003-3312-5566</orcidid></search><sort><creationdate>20200916</creationdate><title>Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy</title><author>Kong, Xi ; Zhou, Leixin ; Li, Zhijie ; Yang, Zhiping ; Qiu, Bensheng ; Wu, Xiaodong ; Shi, Fazhan ; Du, Jiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/705/1042</topic><topic>639/766/483/1255</topic><topic>Artificial intelligence</topic><topic>Classical and Quantum Gravitation</topic><topic>Environmental effects</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Xi</creatorcontrib><creatorcontrib>Zhou, Leixin</creatorcontrib><creatorcontrib>Li, Zhijie</creatorcontrib><creatorcontrib>Yang, Zhiping</creatorcontrib><creatorcontrib>Qiu, Bensheng</creatorcontrib><creatorcontrib>Wu, Xiaodong</creatorcontrib><creatorcontrib>Shi, Fazhan</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Xi</au><au>Zhou, Leixin</au><au>Li, Zhijie</au><au>Yang, Zhiping</au><au>Qiu, Bensheng</au><au>Wu, Xiaodong</au><au>Shi, Fazhan</au><au>Du, Jiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2020-09-16</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>79</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-020-00311-z</doi><orcidid>https://orcid.org/0000-0001-8085-8012</orcidid><orcidid>https://orcid.org/0000-0003-3312-5566</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2056-6387
ispartof npj quantum information, 2020-09, Vol.6 (1), Article 79
issn 2056-6387
2056-6387
language eng
recordid cdi_proquest_journals_1924545043
source Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - nature.com Journals - Fully Open Access
subjects 639/705/1042
639/766/483/1255
Artificial intelligence
Classical and Quantum Gravitation
Environmental effects
Physics
Physics and Astronomy
Quantum Computing
Quantum Field Theories
Quantum Information Technology
Quantum Physics
Quantum theory
Relativity Theory
Spintronics
String Theory
title Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20enhanced%20two-dimensional%20nanoscale%20nuclear%20magnetic%20resonance%20spectroscopy&rft.jtitle=npj%20quantum%20information&rft.au=Kong,%20Xi&rft.date=2020-09-16&rft.volume=6&rft.issue=1&rft.artnum=79&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-020-00311-z&rft_dat=%3Cproquest_cross%3E1924545043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1924545043&rft_id=info:pmid/&rfr_iscdi=true