Loading…
Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy
Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional...
Saved in:
Published in: | npj quantum information 2020-09, Vol.6 (1), Article 79 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | npj quantum information |
container_volume | 6 |
creator | Kong, Xi Zhou, Leixin Li, Zhijie Yang, Zhiping Qiu, Bensheng Wu, Xiaodong Shi, Fazhan Du, Jiangfeng |
description | Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity. |
doi_str_mv | 10.1038/s41534-020-00311-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1924545043</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1924545043</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EElXpH2CKxGzwM03GquIlVWKB2XKc6-IqdYLtCLW_HpcwdGE6d_jO0bkHoVtK7inh1UMUVHKBCSOYEE4pPl6gGSOyxCWvlpdn9zVaxLgjhNCaVUzQGWpWITnrjNNd4XyCrnNb8AYK8J86a1uk7x63bg8-ut5nymvfR6M7KPxoOtCh2Outh-RMESBm5OSOA5gUMtcPhxt0ZXUXYfGnc_Tx9Pi-fsGbt-fX9WqDDS95wuZUy-jSVlLU3LRlXdecyaqxUoMWwrKmYZa3y1IICUQCE6JatkA5qcHQhs_R3ZQ7hP5rhJjUrh9DrhxVfldIIYngmWITZXK9GMCqIbi9DgdFiTrNqaY5VZ5T_c6pjtnEJ1PMsN9COIv-3_UDrrh6KQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924545043</pqid></control><display><type>article</type><title>Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Kong, Xi ; Zhou, Leixin ; Li, Zhijie ; Yang, Zhiping ; Qiu, Bensheng ; Wu, Xiaodong ; Shi, Fazhan ; Du, Jiangfeng</creator><creatorcontrib>Kong, Xi ; Zhou, Leixin ; Li, Zhijie ; Yang, Zhiping ; Qiu, Bensheng ; Wu, Xiaodong ; Shi, Fazhan ; Du, Jiangfeng</creatorcontrib><description>Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.</description><identifier>ISSN: 2056-6387</identifier><identifier>EISSN: 2056-6387</identifier><identifier>DOI: 10.1038/s41534-020-00311-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/705/1042 ; 639/766/483/1255 ; Artificial intelligence ; Classical and Quantum Gravitation ; Environmental effects ; Physics ; Physics and Astronomy ; Quantum Computing ; Quantum Field Theories ; Quantum Information Technology ; Quantum Physics ; Quantum theory ; Relativity Theory ; Spintronics ; String Theory</subject><ispartof>npj quantum information, 2020-09, Vol.6 (1), Article 79</ispartof><rights>The Author(s) 2020</rights><rights>The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3</citedby><cites>FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3</cites><orcidid>0000-0001-8085-8012 ; 0000-0003-3312-5566</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1924545043/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1924545043?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kong, Xi</creatorcontrib><creatorcontrib>Zhou, Leixin</creatorcontrib><creatorcontrib>Li, Zhijie</creatorcontrib><creatorcontrib>Yang, Zhiping</creatorcontrib><creatorcontrib>Qiu, Bensheng</creatorcontrib><creatorcontrib>Wu, Xiaodong</creatorcontrib><creatorcontrib>Shi, Fazhan</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><title>Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy</title><title>npj quantum information</title><addtitle>npj Quantum Inf</addtitle><description>Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.</description><subject>639/705/1042</subject><subject>639/766/483/1255</subject><subject>Artificial intelligence</subject><subject>Classical and Quantum Gravitation</subject><subject>Environmental effects</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Computing</subject><subject>Quantum Field Theories</subject><subject>Quantum Information Technology</subject><subject>Quantum Physics</subject><subject>Quantum theory</subject><subject>Relativity Theory</subject><subject>Spintronics</subject><subject>String Theory</subject><issn>2056-6387</issn><issn>2056-6387</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kDtPwzAUhS0EElXpH2CKxGzwM03GquIlVWKB2XKc6-IqdYLtCLW_HpcwdGE6d_jO0bkHoVtK7inh1UMUVHKBCSOYEE4pPl6gGSOyxCWvlpdn9zVaxLgjhNCaVUzQGWpWITnrjNNd4XyCrnNb8AYK8J86a1uk7x63bg8-ut5nymvfR6M7KPxoOtCh2Outh-RMESBm5OSOA5gUMtcPhxt0ZXUXYfGnc_Tx9Pi-fsGbt-fX9WqDDS95wuZUy-jSVlLU3LRlXdecyaqxUoMWwrKmYZa3y1IICUQCE6JatkA5qcHQhs_R3ZQ7hP5rhJjUrh9DrhxVfldIIYngmWITZXK9GMCqIbi9DgdFiTrNqaY5VZ5T_c6pjtnEJ1PMsN9COIv-3_UDrrh6KQ</recordid><startdate>20200916</startdate><enddate>20200916</enddate><creator>Kong, Xi</creator><creator>Zhou, Leixin</creator><creator>Li, Zhijie</creator><creator>Yang, Zhiping</creator><creator>Qiu, Bensheng</creator><creator>Wu, Xiaodong</creator><creator>Shi, Fazhan</creator><creator>Du, Jiangfeng</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-8085-8012</orcidid><orcidid>https://orcid.org/0000-0003-3312-5566</orcidid></search><sort><creationdate>20200916</creationdate><title>Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy</title><author>Kong, Xi ; Zhou, Leixin ; Li, Zhijie ; Yang, Zhiping ; Qiu, Bensheng ; Wu, Xiaodong ; Shi, Fazhan ; Du, Jiangfeng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>639/705/1042</topic><topic>639/766/483/1255</topic><topic>Artificial intelligence</topic><topic>Classical and Quantum Gravitation</topic><topic>Environmental effects</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Computing</topic><topic>Quantum Field Theories</topic><topic>Quantum Information Technology</topic><topic>Quantum Physics</topic><topic>Quantum theory</topic><topic>Relativity Theory</topic><topic>Spintronics</topic><topic>String Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kong, Xi</creatorcontrib><creatorcontrib>Zhou, Leixin</creatorcontrib><creatorcontrib>Li, Zhijie</creatorcontrib><creatorcontrib>Yang, Zhiping</creatorcontrib><creatorcontrib>Qiu, Bensheng</creatorcontrib><creatorcontrib>Wu, Xiaodong</creatorcontrib><creatorcontrib>Shi, Fazhan</creatorcontrib><creatorcontrib>Du, Jiangfeng</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj quantum information</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kong, Xi</au><au>Zhou, Leixin</au><au>Li, Zhijie</au><au>Yang, Zhiping</au><au>Qiu, Bensheng</au><au>Wu, Xiaodong</au><au>Shi, Fazhan</au><au>Du, Jiangfeng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy</atitle><jtitle>npj quantum information</jtitle><stitle>npj Quantum Inf</stitle><date>2020-09-16</date><risdate>2020</risdate><volume>6</volume><issue>1</issue><artnum>79</artnum><issn>2056-6387</issn><eissn>2056-6387</eissn><abstract>Two-dimensional nuclear magnetic resonance (NMR) is indispensable to molecule structure determination. Nitrogen-vacancy center in diamond has been proposed and developed as an outstanding quantum sensor to realize NMR in nanoscale or even single molecule. However, like conventional multi-dimensional NMR, a more efficient data accumulation and processing method is necessary to realize applicable two-dimensional (2D) nanoscale NMR with a high spatial resolution nitrogen-vacancy sensor. Deep learning is an artificial algorithm, which mimics the network of neurons of human brain, has been demonstrated superb capability in pattern identifying and noise canceling. Here we report a method, combining deep learning and sparse matrix completion, to speed up 2D nanoscale NMR spectroscopy. The signal-to-noise ratio is enhanced by 5.7 ± 1.3 dB in 10% sampling coverage by an artificial intelligence protocol on 2D nanoscale NMR of a single nuclear spin cluster. The artificial intelligence algorithm enhanced 2D nanoscale NMR protocol intrinsically suppresses the observation noise and thus improves sensitivity.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41534-020-00311-z</doi><orcidid>https://orcid.org/0000-0001-8085-8012</orcidid><orcidid>https://orcid.org/0000-0003-3312-5566</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2056-6387 |
ispartof | npj quantum information, 2020-09, Vol.6 (1), Article 79 |
issn | 2056-6387 2056-6387 |
language | eng |
recordid | cdi_proquest_journals_1924545043 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3); Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/705/1042 639/766/483/1255 Artificial intelligence Classical and Quantum Gravitation Environmental effects Physics Physics and Astronomy Quantum Computing Quantum Field Theories Quantum Information Technology Quantum Physics Quantum theory Relativity Theory Spintronics String Theory |
title | Artificial intelligence enhanced two-dimensional nanoscale nuclear magnetic resonance spectroscopy |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T07%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20intelligence%20enhanced%20two-dimensional%20nanoscale%20nuclear%20magnetic%20resonance%20spectroscopy&rft.jtitle=npj%20quantum%20information&rft.au=Kong,%20Xi&rft.date=2020-09-16&rft.volume=6&rft.issue=1&rft.artnum=79&rft.issn=2056-6387&rft.eissn=2056-6387&rft_id=info:doi/10.1038/s41534-020-00311-z&rft_dat=%3Cproquest_cross%3E1924545043%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-c0001ca6f85493cd69993258bf5aea44f2bb2f3d76445e05e24487de1309ec1b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1924545043&rft_id=info:pmid/&rfr_iscdi=true |