Loading…

Multimodel Ensemble Sea Level Forecasts for Tropical Pacific Islands

Sea level anomaly extremes impact tropical Pacific Ocean islands, often with too little warning to mitigate risks. With El Niño, such as the strong 2015/16 event, comes weaker trade winds and mean sea level drops exceeding 30 cm in the western Pacific that expose shallow-water ecosystems at low tide...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology and climatology 2017-04, Vol.56 (4), p.849-862
Main Authors: Widlansky, Matthew J., Marra, John J., Chowdhury, Md. Rashed, Stephens, Scott A., Miles, Elaine R., Fauchereau, Nicolas, Spillman, Claire M., Smith, Grant, Beard, Grant, Wells, Judith
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-ba5df9c420a13520c7fcf896503ff49c8b2f657a24685aa258d7a46c721758163
cites cdi_FETCH-LOGICAL-c448t-ba5df9c420a13520c7fcf896503ff49c8b2f657a24685aa258d7a46c721758163
container_end_page 862
container_issue 4
container_start_page 849
container_title Journal of applied meteorology and climatology
container_volume 56
creator Widlansky, Matthew J.
Marra, John J.
Chowdhury, Md. Rashed
Stephens, Scott A.
Miles, Elaine R.
Fauchereau, Nicolas
Spillman, Claire M.
Smith, Grant
Beard, Grant
Wells, Judith
description Sea level anomaly extremes impact tropical Pacific Ocean islands, often with too little warning to mitigate risks. With El Niño, such as the strong 2015/16 event, comes weaker trade winds and mean sea level drops exceeding 30 cm in the western Pacific that expose shallow-water ecosystems at low tides. Nearly opposite climate conditions accompany La Niña events, which cause sea level high stands (10–20 cm) and result in more frequent tide- and storm-related inundations that threaten coastlines. In the past, these effects have been exacerbated by decadal sea level variability, as well as continuing global sea level rise. Climate models, which are increasingly better able to simulate past and future evolutions of phenomena responsible for these extremes (i.e., El Niño–Southern Oscillation, Pacific decadal oscillation, and greenhouse warming), are also able to describe, or even directly simulate, associated sea level fluctuations. By compiling monthly sea level anomaly predictions from multiple statistical and dynamical (coupled ocean–atmosphere) models, which are typically skillful out to at least six months in the tropical Pacific, improved future outlooks are achieved. From this multimodel ensemble comes forecasts that are less prone to individual model errors and also uncertainty measurements achieved by comparing retrospective forecasts with the observed sea level. This framework delivers online a new real-time forecasting product of monthly mean sea level anomalies and will provide to the Pacific island community information that can be used to reduce impacts associated with sea level extremes.
doi_str_mv 10.1175/jamc-d-16-0284.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_1924694183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26179907</jstor_id><sourcerecordid>26179907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-ba5df9c420a13520c7fcf896503ff49c8b2f657a24685aa258d7a46c721758163</originalsourceid><addsrcrecordid>eNo9kMtLAzEQh4MoWB93L0LA89ZMNs9j6UMrLQrWc0izCeyy29RkK_jfu6XS0wzD980wP4QegIwBJH9ubOeKqgBREKrYGC7QCDhXhWIlvTz3lF2jm5wbQhiTko_QbH1o-7qLlW_xfJd9t209_vQWr_zPMFrE5J3NfcYhJrxJcV872-IP6-pQO7zMrd1V-Q5dBdtmf_9fb9HXYr6Zvhar95fldLIqHGOqL7aWV0E7RomFklPiZHBBacFJGQLTTm1pEFxayoTi1lKuKmmZcJIODyoQ5S16Ou3dp_h98Lk3TTyk3XDSgB4szUCVA0VOlEsx5-SD2ae6s-nXADHHrMzbZD01MwPCHLMyMCiPJ6XJfUxnngqQWhNZ_gG9TWVp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1924694183</pqid></control><display><type>article</type><title>Multimodel Ensemble Sea Level Forecasts for Tropical Pacific Islands</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Widlansky, Matthew J. ; Marra, John J. ; Chowdhury, Md. Rashed ; Stephens, Scott A. ; Miles, Elaine R. ; Fauchereau, Nicolas ; Spillman, Claire M. ; Smith, Grant ; Beard, Grant ; Wells, Judith</creator><creatorcontrib>Widlansky, Matthew J. ; Marra, John J. ; Chowdhury, Md. Rashed ; Stephens, Scott A. ; Miles, Elaine R. ; Fauchereau, Nicolas ; Spillman, Claire M. ; Smith, Grant ; Beard, Grant ; Wells, Judith</creatorcontrib><description>Sea level anomaly extremes impact tropical Pacific Ocean islands, often with too little warning to mitigate risks. With El Niño, such as the strong 2015/16 event, comes weaker trade winds and mean sea level drops exceeding 30 cm in the western Pacific that expose shallow-water ecosystems at low tides. Nearly opposite climate conditions accompany La Niña events, which cause sea level high stands (10–20 cm) and result in more frequent tide- and storm-related inundations that threaten coastlines. In the past, these effects have been exacerbated by decadal sea level variability, as well as continuing global sea level rise. Climate models, which are increasingly better able to simulate past and future evolutions of phenomena responsible for these extremes (i.e., El Niño–Southern Oscillation, Pacific decadal oscillation, and greenhouse warming), are also able to describe, or even directly simulate, associated sea level fluctuations. By compiling monthly sea level anomaly predictions from multiple statistical and dynamical (coupled ocean–atmosphere) models, which are typically skillful out to at least six months in the tropical Pacific, improved future outlooks are achieved. From this multimodel ensemble comes forecasts that are less prone to individual model errors and also uncertainty measurements achieved by comparing retrospective forecasts with the observed sea level. This framework delivers online a new real-time forecasting product of monthly mean sea level anomalies and will provide to the Pacific island community information that can be used to reduce impacts associated with sea level extremes.</description><identifier>ISSN: 1558-8424</identifier><identifier>EISSN: 1558-8432</identifier><identifier>DOI: 10.1175/jamc-d-16-0284.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Anomalies ; Atmospheric models ; Climate ; Climate change ; Climate models ; Climatic conditions ; El Nino ; El Nino phenomena ; Ensemble forecasting ; Global sea level ; Greenhouse effect ; Ice ; Islands ; La Nina ; La Nina events ; Low tide ; Mean sea level ; Monthly mean sea level ; Ocean models ; Ocean-atmosphere system ; Oceans ; Pacific Decadal Oscillation ; Risk reduction ; Sea level ; Sea level anomalies ; Sea level changes ; Sea level fluctuations ; Sea level forecasting ; Sea level rise ; Sea level variability ; Shallow water ; Southern Oscillation ; Statistical analysis ; Storms ; Trade winds ; Trends ; Tropical climate</subject><ispartof>Journal of applied meteorology and climatology, 2017-04, Vol.56 (4), p.849-862</ispartof><rights>2017 American Meteorological Society</rights><rights>Copyright American Meteorological Society Apr 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-ba5df9c420a13520c7fcf896503ff49c8b2f657a24685aa258d7a46c721758163</citedby><cites>FETCH-LOGICAL-c448t-ba5df9c420a13520c7fcf896503ff49c8b2f657a24685aa258d7a46c721758163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26179907$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26179907$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Widlansky, Matthew J.</creatorcontrib><creatorcontrib>Marra, John J.</creatorcontrib><creatorcontrib>Chowdhury, Md. Rashed</creatorcontrib><creatorcontrib>Stephens, Scott A.</creatorcontrib><creatorcontrib>Miles, Elaine R.</creatorcontrib><creatorcontrib>Fauchereau, Nicolas</creatorcontrib><creatorcontrib>Spillman, Claire M.</creatorcontrib><creatorcontrib>Smith, Grant</creatorcontrib><creatorcontrib>Beard, Grant</creatorcontrib><creatorcontrib>Wells, Judith</creatorcontrib><title>Multimodel Ensemble Sea Level Forecasts for Tropical Pacific Islands</title><title>Journal of applied meteorology and climatology</title><description>Sea level anomaly extremes impact tropical Pacific Ocean islands, often with too little warning to mitigate risks. With El Niño, such as the strong 2015/16 event, comes weaker trade winds and mean sea level drops exceeding 30 cm in the western Pacific that expose shallow-water ecosystems at low tides. Nearly opposite climate conditions accompany La Niña events, which cause sea level high stands (10–20 cm) and result in more frequent tide- and storm-related inundations that threaten coastlines. In the past, these effects have been exacerbated by decadal sea level variability, as well as continuing global sea level rise. Climate models, which are increasingly better able to simulate past and future evolutions of phenomena responsible for these extremes (i.e., El Niño–Southern Oscillation, Pacific decadal oscillation, and greenhouse warming), are also able to describe, or even directly simulate, associated sea level fluctuations. By compiling monthly sea level anomaly predictions from multiple statistical and dynamical (coupled ocean–atmosphere) models, which are typically skillful out to at least six months in the tropical Pacific, improved future outlooks are achieved. From this multimodel ensemble comes forecasts that are less prone to individual model errors and also uncertainty measurements achieved by comparing retrospective forecasts with the observed sea level. This framework delivers online a new real-time forecasting product of monthly mean sea level anomalies and will provide to the Pacific island community information that can be used to reduce impacts associated with sea level extremes.</description><subject>Anomalies</subject><subject>Atmospheric models</subject><subject>Climate</subject><subject>Climate change</subject><subject>Climate models</subject><subject>Climatic conditions</subject><subject>El Nino</subject><subject>El Nino phenomena</subject><subject>Ensemble forecasting</subject><subject>Global sea level</subject><subject>Greenhouse effect</subject><subject>Ice</subject><subject>Islands</subject><subject>La Nina</subject><subject>La Nina events</subject><subject>Low tide</subject><subject>Mean sea level</subject><subject>Monthly mean sea level</subject><subject>Ocean models</subject><subject>Ocean-atmosphere system</subject><subject>Oceans</subject><subject>Pacific Decadal Oscillation</subject><subject>Risk reduction</subject><subject>Sea level</subject><subject>Sea level anomalies</subject><subject>Sea level changes</subject><subject>Sea level fluctuations</subject><subject>Sea level forecasting</subject><subject>Sea level rise</subject><subject>Sea level variability</subject><subject>Shallow water</subject><subject>Southern Oscillation</subject><subject>Statistical analysis</subject><subject>Storms</subject><subject>Trade winds</subject><subject>Trends</subject><subject>Tropical climate</subject><issn>1558-8424</issn><issn>1558-8432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kMtLAzEQh4MoWB93L0LA89ZMNs9j6UMrLQrWc0izCeyy29RkK_jfu6XS0wzD980wP4QegIwBJH9ubOeKqgBREKrYGC7QCDhXhWIlvTz3lF2jm5wbQhiTko_QbH1o-7qLlW_xfJd9t209_vQWr_zPMFrE5J3NfcYhJrxJcV872-IP6-pQO7zMrd1V-Q5dBdtmf_9fb9HXYr6Zvhar95fldLIqHGOqL7aWV0E7RomFklPiZHBBacFJGQLTTm1pEFxayoTi1lKuKmmZcJIODyoQ5S16Ou3dp_h98Lk3TTyk3XDSgB4szUCVA0VOlEsx5-SD2ae6s-nXADHHrMzbZD01MwPCHLMyMCiPJ6XJfUxnngqQWhNZ_gG9TWVp</recordid><startdate>20170401</startdate><enddate>20170401</enddate><creator>Widlansky, Matthew J.</creator><creator>Marra, John J.</creator><creator>Chowdhury, Md. Rashed</creator><creator>Stephens, Scott A.</creator><creator>Miles, Elaine R.</creator><creator>Fauchereau, Nicolas</creator><creator>Spillman, Claire M.</creator><creator>Smith, Grant</creator><creator>Beard, Grant</creator><creator>Wells, Judith</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>S0X</scope></search><sort><creationdate>20170401</creationdate><title>Multimodel Ensemble Sea Level Forecasts for Tropical Pacific Islands</title><author>Widlansky, Matthew J. ; Marra, John J. ; Chowdhury, Md. Rashed ; Stephens, Scott A. ; Miles, Elaine R. ; Fauchereau, Nicolas ; Spillman, Claire M. ; Smith, Grant ; Beard, Grant ; Wells, Judith</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-ba5df9c420a13520c7fcf896503ff49c8b2f657a24685aa258d7a46c721758163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anomalies</topic><topic>Atmospheric models</topic><topic>Climate</topic><topic>Climate change</topic><topic>Climate models</topic><topic>Climatic conditions</topic><topic>El Nino</topic><topic>El Nino phenomena</topic><topic>Ensemble forecasting</topic><topic>Global sea level</topic><topic>Greenhouse effect</topic><topic>Ice</topic><topic>Islands</topic><topic>La Nina</topic><topic>La Nina events</topic><topic>Low tide</topic><topic>Mean sea level</topic><topic>Monthly mean sea level</topic><topic>Ocean models</topic><topic>Ocean-atmosphere system</topic><topic>Oceans</topic><topic>Pacific Decadal Oscillation</topic><topic>Risk reduction</topic><topic>Sea level</topic><topic>Sea level anomalies</topic><topic>Sea level changes</topic><topic>Sea level fluctuations</topic><topic>Sea level forecasting</topic><topic>Sea level rise</topic><topic>Sea level variability</topic><topic>Shallow water</topic><topic>Southern Oscillation</topic><topic>Statistical analysis</topic><topic>Storms</topic><topic>Trade winds</topic><topic>Trends</topic><topic>Tropical climate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Widlansky, Matthew J.</creatorcontrib><creatorcontrib>Marra, John J.</creatorcontrib><creatorcontrib>Chowdhury, Md. Rashed</creatorcontrib><creatorcontrib>Stephens, Scott A.</creatorcontrib><creatorcontrib>Miles, Elaine R.</creatorcontrib><creatorcontrib>Fauchereau, Nicolas</creatorcontrib><creatorcontrib>Spillman, Claire M.</creatorcontrib><creatorcontrib>Smith, Grant</creatorcontrib><creatorcontrib>Beard, Grant</creatorcontrib><creatorcontrib>Wells, Judith</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>SIRS Editorial</collection><jtitle>Journal of applied meteorology and climatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Widlansky, Matthew J.</au><au>Marra, John J.</au><au>Chowdhury, Md. Rashed</au><au>Stephens, Scott A.</au><au>Miles, Elaine R.</au><au>Fauchereau, Nicolas</au><au>Spillman, Claire M.</au><au>Smith, Grant</au><au>Beard, Grant</au><au>Wells, Judith</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodel Ensemble Sea Level Forecasts for Tropical Pacific Islands</atitle><jtitle>Journal of applied meteorology and climatology</jtitle><date>2017-04-01</date><risdate>2017</risdate><volume>56</volume><issue>4</issue><spage>849</spage><epage>862</epage><pages>849-862</pages><issn>1558-8424</issn><eissn>1558-8432</eissn><abstract>Sea level anomaly extremes impact tropical Pacific Ocean islands, often with too little warning to mitigate risks. With El Niño, such as the strong 2015/16 event, comes weaker trade winds and mean sea level drops exceeding 30 cm in the western Pacific that expose shallow-water ecosystems at low tides. Nearly opposite climate conditions accompany La Niña events, which cause sea level high stands (10–20 cm) and result in more frequent tide- and storm-related inundations that threaten coastlines. In the past, these effects have been exacerbated by decadal sea level variability, as well as continuing global sea level rise. Climate models, which are increasingly better able to simulate past and future evolutions of phenomena responsible for these extremes (i.e., El Niño–Southern Oscillation, Pacific decadal oscillation, and greenhouse warming), are also able to describe, or even directly simulate, associated sea level fluctuations. By compiling monthly sea level anomaly predictions from multiple statistical and dynamical (coupled ocean–atmosphere) models, which are typically skillful out to at least six months in the tropical Pacific, improved future outlooks are achieved. From this multimodel ensemble comes forecasts that are less prone to individual model errors and also uncertainty measurements achieved by comparing retrospective forecasts with the observed sea level. This framework delivers online a new real-time forecasting product of monthly mean sea level anomalies and will provide to the Pacific island community information that can be used to reduce impacts associated with sea level extremes.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jamc-d-16-0284.1</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1558-8424
ispartof Journal of applied meteorology and climatology, 2017-04, Vol.56 (4), p.849-862
issn 1558-8424
1558-8432
language eng
recordid cdi_proquest_journals_1924694183
source JSTOR Archival Journals and Primary Sources Collection
subjects Anomalies
Atmospheric models
Climate
Climate change
Climate models
Climatic conditions
El Nino
El Nino phenomena
Ensemble forecasting
Global sea level
Greenhouse effect
Ice
Islands
La Nina
La Nina events
Low tide
Mean sea level
Monthly mean sea level
Ocean models
Ocean-atmosphere system
Oceans
Pacific Decadal Oscillation
Risk reduction
Sea level
Sea level anomalies
Sea level changes
Sea level fluctuations
Sea level forecasting
Sea level rise
Sea level variability
Shallow water
Southern Oscillation
Statistical analysis
Storms
Trade winds
Trends
Tropical climate
title Multimodel Ensemble Sea Level Forecasts for Tropical Pacific Islands
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T09%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodel%20Ensemble%20Sea%20Level%20Forecasts%20for%20Tropical%20Pacific%20Islands&rft.jtitle=Journal%20of%20applied%20meteorology%20and%20climatology&rft.au=Widlansky,%20Matthew%20J.&rft.date=2017-04-01&rft.volume=56&rft.issue=4&rft.spage=849&rft.epage=862&rft.pages=849-862&rft.issn=1558-8424&rft.eissn=1558-8432&rft_id=info:doi/10.1175/jamc-d-16-0284.1&rft_dat=%3Cjstor_proqu%3E26179907%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-ba5df9c420a13520c7fcf896503ff49c8b2f657a24685aa258d7a46c721758163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1924694183&rft_id=info:pmid/&rft_jstor_id=26179907&rfr_iscdi=true