Loading…
Approximating Long-Term Statistics Early in the Global Precipitation Measurement Era
Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMM’s successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping...
Saved in:
Published in: | Earth interactions 2017-04, Vol.21 (3), p.1-10 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMM’s successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities, such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking. |
---|---|
ISSN: | 1087-3562 1087-3562 |
DOI: | 10.1175/EI-D-16-0025.1 |