Loading…
Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage
Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and...
Saved in:
Published in: | Advanced functional materials 2017-08, Vol.27 (29), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73 |
---|---|
cites | cdi_FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73 |
container_end_page | n/a |
container_issue | 29 |
container_start_page | |
container_title | Advanced functional materials |
container_volume | 27 |
creator | Li, Ying‐Qi Li, Jian‐Chen Lang, Xing‐You Wen, Zi Zheng, Wei‐Tao Jiang, Qing |
description | Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles).
3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage. |
doi_str_mv | 10.1002/adfm.201700447 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925172164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925172164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMltiTvEttjuWXmilIgaoxGY5vjSp0qY4jqpuPALPyJOQUi4j0_l19H3nSD8A1xj1MELkVlu_7hGEBUKMiRPQwRzzhCIiT38zfjkHF3W9Qi0mKOuA3byIedGs4azawLvgdMx1Vjo4Lp2JobKuhruWgHQEp4ULOpi8MLqEg0OILdMEB30V4KKMQdfxS9Yb29LL_OPtfai32hRxD3_-PMUq6KW7BGdel7W7-p5dsJiMn4fTZP54PxsO5omhKRdJ5i0hUjDkvJfSCGQkZo5JQ61uF9JLZr33lKaOpCSjmfW6bzhPM44st4J2wc3x7jZUr42ro1pVTdi0LxXukxQLgjlrqd6RMqGq6-C82oZircNeYaQO5apDueq33FboH4VdUbr9P7QajCYPf-4nN92Amw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925172164</pqid></control><display><type>article</type><title>Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Li, Ying‐Qi ; Li, Jian‐Chen ; Lang, Xing‐You ; Wen, Zi ; Zheng, Wei‐Tao ; Jiang, Qing</creator><creatorcontrib>Li, Ying‐Qi ; Li, Jian‐Chen ; Lang, Xing‐You ; Wen, Zi ; Zheng, Wei‐Tao ; Jiang, Qing</creatorcontrib><description>Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles).
3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201700447</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accumulators ; Architecture ; breathable electrodes ; Collectors ; Detaching ; Electrodes ; Electron transport ; Encapsulation ; Fe3O4 ; Grinding (comminution) ; hybrid electrodes ; Integrity ; Iron oxides ; Lithium ; Lithium batteries ; lithium ion batteries ; Materials science ; Metal oxides ; MnO2 ; Nanoparticles ; Rechargeable batteries ; Sodium-ion batteries</subject><ispartof>Advanced functional materials, 2017-08, Vol.27 (29), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73</citedby><cites>FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Ying‐Qi</creatorcontrib><creatorcontrib>Li, Jian‐Chen</creatorcontrib><creatorcontrib>Lang, Xing‐You</creatorcontrib><creatorcontrib>Wen, Zi</creatorcontrib><creatorcontrib>Zheng, Wei‐Tao</creatorcontrib><creatorcontrib>Jiang, Qing</creatorcontrib><title>Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage</title><title>Advanced functional materials</title><description>Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles).
3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.</description><subject>Accumulators</subject><subject>Architecture</subject><subject>breathable electrodes</subject><subject>Collectors</subject><subject>Detaching</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Encapsulation</subject><subject>Fe3O4</subject><subject>Grinding (comminution)</subject><subject>hybrid electrodes</subject><subject>Integrity</subject><subject>Iron oxides</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium ion batteries</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>MnO2</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqWwMltiTvEttjuWXmilIgaoxGY5vjSp0qY4jqpuPALPyJOQUi4j0_l19H3nSD8A1xj1MELkVlu_7hGEBUKMiRPQwRzzhCIiT38zfjkHF3W9Qi0mKOuA3byIedGs4azawLvgdMx1Vjo4Lp2JobKuhruWgHQEp4ULOpi8MLqEg0OILdMEB30V4KKMQdfxS9Yb29LL_OPtfai32hRxD3_-PMUq6KW7BGdel7W7-p5dsJiMn4fTZP54PxsO5omhKRdJ5i0hUjDkvJfSCGQkZo5JQ61uF9JLZr33lKaOpCSjmfW6bzhPM44st4J2wc3x7jZUr42ro1pVTdi0LxXukxQLgjlrqd6RMqGq6-C82oZircNeYaQO5apDueq33FboH4VdUbr9P7QajCYPf-4nN92Amw</recordid><startdate>20170804</startdate><enddate>20170804</enddate><creator>Li, Ying‐Qi</creator><creator>Li, Jian‐Chen</creator><creator>Lang, Xing‐You</creator><creator>Wen, Zi</creator><creator>Zheng, Wei‐Tao</creator><creator>Jiang, Qing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170804</creationdate><title>Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage</title><author>Li, Ying‐Qi ; Li, Jian‐Chen ; Lang, Xing‐You ; Wen, Zi ; Zheng, Wei‐Tao ; Jiang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulators</topic><topic>Architecture</topic><topic>breathable electrodes</topic><topic>Collectors</topic><topic>Detaching</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Encapsulation</topic><topic>Fe3O4</topic><topic>Grinding (comminution)</topic><topic>hybrid electrodes</topic><topic>Integrity</topic><topic>Iron oxides</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium ion batteries</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>MnO2</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ying‐Qi</creatorcontrib><creatorcontrib>Li, Jian‐Chen</creatorcontrib><creatorcontrib>Lang, Xing‐You</creatorcontrib><creatorcontrib>Wen, Zi</creatorcontrib><creatorcontrib>Zheng, Wei‐Tao</creatorcontrib><creatorcontrib>Jiang, Qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ying‐Qi</au><au>Li, Jian‐Chen</au><au>Lang, Xing‐You</au><au>Wen, Zi</au><au>Zheng, Wei‐Tao</au><au>Jiang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage</atitle><jtitle>Advanced functional materials</jtitle><date>2017-08-04</date><risdate>2017</risdate><volume>27</volume><issue>29</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles).
3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201700447</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1616-301X |
ispartof | Advanced functional materials, 2017-08, Vol.27 (29), p.n/a |
issn | 1616-301X 1616-3028 |
language | eng |
recordid | cdi_proquest_journals_1925172164 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Accumulators Architecture breathable electrodes Collectors Detaching Electrodes Electron transport Encapsulation Fe3O4 Grinding (comminution) hybrid electrodes Integrity Iron oxides Lithium Lithium batteries lithium ion batteries Materials science Metal oxides MnO2 Nanoparticles Rechargeable batteries Sodium-ion batteries |
title | Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Ion%20Breathable%20Electrodes%20with%203D%20Hierarchical%20Architecture%20for%20Ultrastable%20and%20High%E2%80%90Capacity%20Lithium%20Storage&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Ying%E2%80%90Qi&rft.date=2017-08-04&rft.volume=27&rft.issue=29&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201700447&rft_dat=%3Cproquest_cross%3E1925172164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925172164&rft_id=info:pmid/&rfr_iscdi=true |