Loading…

Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage

Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and...

Full description

Saved in:
Bibliographic Details
Published in:Advanced functional materials 2017-08, Vol.27 (29), p.n/a
Main Authors: Li, Ying‐Qi, Li, Jian‐Chen, Lang, Xing‐You, Wen, Zi, Zheng, Wei‐Tao, Jiang, Qing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73
cites cdi_FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73
container_end_page n/a
container_issue 29
container_start_page
container_title Advanced functional materials
container_volume 27
creator Li, Ying‐Qi
Li, Jian‐Chen
Lang, Xing‐You
Wen, Zi
Zheng, Wei‐Tao
Jiang, Qing
description Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles). 3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.
doi_str_mv 10.1002/adfm.201700447
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925172164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925172164</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73</originalsourceid><addsrcrecordid>eNqFkLtOwzAUhi0EEqWwMltiTvEttjuWXmilIgaoxGY5vjSp0qY4jqpuPALPyJOQUi4j0_l19H3nSD8A1xj1MELkVlu_7hGEBUKMiRPQwRzzhCIiT38zfjkHF3W9Qi0mKOuA3byIedGs4azawLvgdMx1Vjo4Lp2JobKuhruWgHQEp4ULOpi8MLqEg0OILdMEB30V4KKMQdfxS9Yb29LL_OPtfai32hRxD3_-PMUq6KW7BGdel7W7-p5dsJiMn4fTZP54PxsO5omhKRdJ5i0hUjDkvJfSCGQkZo5JQ61uF9JLZr33lKaOpCSjmfW6bzhPM44st4J2wc3x7jZUr42ro1pVTdi0LxXukxQLgjlrqd6RMqGq6-C82oZircNeYaQO5apDueq33FboH4VdUbr9P7QajCYPf-4nN92Amw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925172164</pqid></control><display><type>article</type><title>Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Li, Ying‐Qi ; Li, Jian‐Chen ; Lang, Xing‐You ; Wen, Zi ; Zheng, Wei‐Tao ; Jiang, Qing</creator><creatorcontrib>Li, Ying‐Qi ; Li, Jian‐Chen ; Lang, Xing‐You ; Wen, Zi ; Zheng, Wei‐Tao ; Jiang, Qing</creatorcontrib><description>Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles). 3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.201700447</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>Accumulators ; Architecture ; breathable electrodes ; Collectors ; Detaching ; Electrodes ; Electron transport ; Encapsulation ; Fe3O4 ; Grinding (comminution) ; hybrid electrodes ; Integrity ; Iron oxides ; Lithium ; Lithium batteries ; lithium ion batteries ; Materials science ; Metal oxides ; MnO2 ; Nanoparticles ; Rechargeable batteries ; Sodium-ion batteries</subject><ispartof>Advanced functional materials, 2017-08, Vol.27 (29), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73</citedby><cites>FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Ying‐Qi</creatorcontrib><creatorcontrib>Li, Jian‐Chen</creatorcontrib><creatorcontrib>Lang, Xing‐You</creatorcontrib><creatorcontrib>Wen, Zi</creatorcontrib><creatorcontrib>Zheng, Wei‐Tao</creatorcontrib><creatorcontrib>Jiang, Qing</creatorcontrib><title>Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage</title><title>Advanced functional materials</title><description>Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles). 3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.</description><subject>Accumulators</subject><subject>Architecture</subject><subject>breathable electrodes</subject><subject>Collectors</subject><subject>Detaching</subject><subject>Electrodes</subject><subject>Electron transport</subject><subject>Encapsulation</subject><subject>Fe3O4</subject><subject>Grinding (comminution)</subject><subject>hybrid electrodes</subject><subject>Integrity</subject><subject>Iron oxides</subject><subject>Lithium</subject><subject>Lithium batteries</subject><subject>lithium ion batteries</subject><subject>Materials science</subject><subject>Metal oxides</subject><subject>MnO2</subject><subject>Nanoparticles</subject><subject>Rechargeable batteries</subject><subject>Sodium-ion batteries</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkLtOwzAUhi0EEqWwMltiTvEttjuWXmilIgaoxGY5vjSp0qY4jqpuPALPyJOQUi4j0_l19H3nSD8A1xj1MELkVlu_7hGEBUKMiRPQwRzzhCIiT38zfjkHF3W9Qi0mKOuA3byIedGs4azawLvgdMx1Vjo4Lp2JobKuhruWgHQEp4ULOpi8MLqEg0OILdMEB30V4KKMQdfxS9Yb29LL_OPtfai32hRxD3_-PMUq6KW7BGdel7W7-p5dsJiMn4fTZP54PxsO5omhKRdJ5i0hUjDkvJfSCGQkZo5JQ61uF9JLZr33lKaOpCSjmfW6bzhPM44st4J2wc3x7jZUr42ro1pVTdi0LxXukxQLgjlrqd6RMqGq6-C82oZircNeYaQO5apDueq33FboH4VdUbr9P7QajCYPf-4nN92Amw</recordid><startdate>20170804</startdate><enddate>20170804</enddate><creator>Li, Ying‐Qi</creator><creator>Li, Jian‐Chen</creator><creator>Lang, Xing‐You</creator><creator>Wen, Zi</creator><creator>Zheng, Wei‐Tao</creator><creator>Jiang, Qing</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20170804</creationdate><title>Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage</title><author>Li, Ying‐Qi ; Li, Jian‐Chen ; Lang, Xing‐You ; Wen, Zi ; Zheng, Wei‐Tao ; Jiang, Qing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Accumulators</topic><topic>Architecture</topic><topic>breathable electrodes</topic><topic>Collectors</topic><topic>Detaching</topic><topic>Electrodes</topic><topic>Electron transport</topic><topic>Encapsulation</topic><topic>Fe3O4</topic><topic>Grinding (comminution)</topic><topic>hybrid electrodes</topic><topic>Integrity</topic><topic>Iron oxides</topic><topic>Lithium</topic><topic>Lithium batteries</topic><topic>lithium ion batteries</topic><topic>Materials science</topic><topic>Metal oxides</topic><topic>MnO2</topic><topic>Nanoparticles</topic><topic>Rechargeable batteries</topic><topic>Sodium-ion batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ying‐Qi</creatorcontrib><creatorcontrib>Li, Jian‐Chen</creatorcontrib><creatorcontrib>Lang, Xing‐You</creatorcontrib><creatorcontrib>Wen, Zi</creatorcontrib><creatorcontrib>Zheng, Wei‐Tao</creatorcontrib><creatorcontrib>Jiang, Qing</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ying‐Qi</au><au>Li, Jian‐Chen</au><au>Lang, Xing‐You</au><au>Wen, Zi</au><au>Zheng, Wei‐Tao</au><au>Jiang, Qing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage</atitle><jtitle>Advanced functional materials</jtitle><date>2017-08-04</date><risdate>2017</risdate><volume>27</volume><issue>29</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Transition‐metal oxides show genuine potential in replacing state‐of‐the‐art carbonaceous anode materials in lithium‐ or sodium‐ion batteries because of their much higher theoretical capacity. However, they usually undergo massive volume change, which leads to numerous problems in both material and electrode levels, such as material pulverization, instable solid‐electrolyte interphase, and electrode failure. Here, it is demonstrated that lithium‐ion breathable hybrid electrodes with 3D architecture tackle all these problems, using a typical conversion‐type transition‐metal oxide, Fe3O4, of which nanoparticles are anchored onto 3D current collectors of Ni nanotube arrays (NTAs) and encapsulated by δ‐MnO2 layers (Ni/Fe3O4@MnO2). The δ‐MnO2 layers reversibly switch lithium insertion/extraction of internal Fe3O4 nanoparticles and protect them against pulverizing and detaching from NTA current collectors, securing exceptional integrity retention and efficient ion/electron transport. The Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage (retaining ≈1450 mAh g−1, ≈96% of initial value at 1 C rate after 1000 cycles). 3D lithium‐ion breathable hybrid electrodes are successfully constructed by anchoring Fe3O4 nanoparticles onto highly conductive 3D current collectors of Ni nanotube arrays and encapsulating them with reversibly switching δ‐MnO2 layers. As a result of integrity retention and efficient ion/electron transport, the Ni/Fe3O4@MnO2 electrodes exhibit superior cyclability and high‐capacity lithium storage.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.201700447</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2017-08, Vol.27 (29), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_1925172164
source Wiley-Blackwell Read & Publish Collection
subjects Accumulators
Architecture
breathable electrodes
Collectors
Detaching
Electrodes
Electron transport
Encapsulation
Fe3O4
Grinding (comminution)
hybrid electrodes
Integrity
Iron oxides
Lithium
Lithium batteries
lithium ion batteries
Materials science
Metal oxides
MnO2
Nanoparticles
Rechargeable batteries
Sodium-ion batteries
title Lithium Ion Breathable Electrodes with 3D Hierarchical Architecture for Ultrastable and High‐Capacity Lithium Storage
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T10%3A59%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lithium%20Ion%20Breathable%20Electrodes%20with%203D%20Hierarchical%20Architecture%20for%20Ultrastable%20and%20High%E2%80%90Capacity%20Lithium%20Storage&rft.jtitle=Advanced%20functional%20materials&rft.au=Li,%20Ying%E2%80%90Qi&rft.date=2017-08-04&rft.volume=27&rft.issue=29&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.201700447&rft_dat=%3Cproquest_cross%3E1925172164%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3567-bfd228740eff88c70c814e48c3daf888f84dfff335e252b3bdfa9c665b60d6d73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925172164&rft_id=info:pmid/&rfr_iscdi=true