Loading…
Evaluation of CMPA precipitation estimate in the evolution of typhoon-related storm rainfall in Guangdong, China
The merged precipitation data of Climate Prediction Center Morphing Technique and gauge observations (CMPA) generated for continental China has relatively high spatial and temporal resolution (hourly and 0.1°), while few studies have applied it to investigate the typhoon-related extreme rainfall. Th...
Saved in:
Published in: | Journal of hydroinformatics 2016-11, Vol.18 (6), p.1055-1068 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The merged precipitation data of Climate Prediction Center Morphing Technique and gauge observations (CMPA) generated for continental China has relatively high spatial and temporal resolution (hourly and 0.1°), while few studies have applied it to investigate the typhoon-related extreme rainfall. This study evaluates the CMPA estimate in quantifying the typhoon-related extreme rainfall using a dense rain gauge network in Guangdong Province, China. The results show that the event-total precipitation from CMPA is generally in agreement with gauges by relative bias (RB) of 2.62, 10.74 and 0.63% and correlation coefficients (CCs) of 0.76, 0.86 and 0.91 for typhoon Utor, Usagi and Linfa events, respectively. At the hourly scale, CMPA underestimates the occurrence of light rain (16 mm/h), while overestimates the occurrence of moderate rain. CMPA shows high probability of detection (POD = 0.93), relatively large false alarm ratio (FAR = 0.22) and small missing ratio (0.07). CMPA captures the spatial patterns of typhoon-related rain depth, and is in agreement with the spatiotemporal evolution of hourly gauge observations by CC from 0.93 to 0.99. In addition, cautiousness should be taken when applying it in hydrologic modeling for flooding forecasting since CMPA underestimates heavy rain (>16 mm/h). |
---|---|
ISSN: | 1464-7141 1465-1734 |
DOI: | 10.2166/hydro.2016.241 |