Loading…

Selection of global climate models for India using cluster analysis

Global climate models (GCMs) are gaining importance due to their capability to ascertain climate variables that will be useful to develop long, medium and short term water resources planning strategies. The applicability of K-Means cluster analysis is explored for grouping 36 GCMs from Coupled Model...

Full description

Saved in:
Bibliographic Details
Published in:Journal of water and climate change 2016-12, Vol.7 (4), p.764-774
Main Authors: Srinivasa Raju, K., Nagesh Kumar, D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Global climate models (GCMs) are gaining importance due to their capability to ascertain climate variables that will be useful to develop long, medium and short term water resources planning strategies. The applicability of K-Means cluster analysis is explored for grouping 36 GCMs from Coupled Model Intercomparison Project 5 for maximum temperature (MAXT), minimum temperature (MINT) and a combination of maximum and minimum temperature (COMBT) over India. Cluster validation methods, namely the Davies–Bouldin Index (DBI) and F-statistic, are used to obtain an optimal number of clusters of GCMs for India. The indicator chosen for evaluation of GCMs is the probability density function based skill score. It is noticed that the optimal number of clusters for MAXT, MINT and COMBT scenarios are 3, 2 and 2, respectively. Accordingly, suitable ensembles of GCMs are suggested for India for MAXT, MINT and COMBT individually. The suggested methodology can be extended to any number of GCMs and indicators, with minor modifications.
ISSN:2040-2244
2408-9354
DOI:10.2166/wcc.2016.112