Loading…
Flood forecasting that considers the impact of hydraulic projects by an improved TOPMODEL model in the Wudaogou basin, Northeast China
Many hydraulic projects such as reservoirs, ponds and paddy fields as well as soil and water conservation engineering projects have been constructed to improve utilization of water resources upstream of the Wudaogou station basin in Northeast China in recent years. As a result, the local hydrologica...
Saved in:
Published in: | Water science & technology. Water supply 2016-10, Vol.16 (5), p.1467-1476 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Many hydraulic projects such as reservoirs, ponds and paddy fields as well as soil and water conservation engineering projects have been constructed to improve utilization of water resources upstream of the Wudaogou station basin in Northeast China in recent years. As a result, the local hydrological characteristics of the basin and the flood runoff and process have been changed. These changes in the basin characteristics make basin hydrological forecasting more difficult. In order to model and assess this situation, the TOPMODEL, which includes the dynamic soil moisture storage capacity (DSMSC-TOPMODEL), is used in this study to simulate the flood impact of hydraulic projects. Furthermore, the Bayesian method is used to evaluate model parameter uncertainty and assess the TOPMODEL's performance over the basin. Flood simulation results show that accuracy is significantly improved when the stock version of TOPMODEL is replaced with DSMSC-TOPMODEL, with the qualified ratio of forecasting runoff yield increasing from 65% in the former to 88% in the latter. Moreover, these flood simulations are more suitable for helping observers visualize the process. |
---|---|
ISSN: | 1606-9749 1607-0798 |
DOI: | 10.2166/ws.2016.075 |