Loading…
Synthesis of cross-linked comb-type polysiloxane for polymer electrolyte membranes
Hydrosilylation reaction of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl acetoacetate and vinyltriethoxysilane at 1:3:1 ratio of initial compounds in the presence of Karstedt’s catalyst (Pt2[(VinSiMe2)2O]3), platinum hydrochloric acid (0.1 M solution in THF) and platinum on th...
Saved in:
Published in: | e-Polymers 2012-12, Vol.12 (1), p.1023-1036 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c478t-a1ae17d542b51c2171ea89eeb4740261df19dbed095fdd13663053c288f88dad3 |
---|---|
cites | |
container_end_page | 1036 |
container_issue | 1 |
container_start_page | 1023 |
container_title | e-Polymers |
container_volume | 12 |
creator | Mukbaniani, Omar Aneli, Jimsher Tatrishvili, Tamara Markarashvili, Eliza Chigvinadze, Maia Abadie, Marc Jean Medard |
description | Hydrosilylation reaction of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl acetoacetate and vinyltriethoxysilane at 1:3:1 ratio of initial compounds in the presence of Karstedt’s catalyst (Pt2[(VinSiMe2)2O]3), platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon have been studied and D
type methylorganocyclotetrasiloxane has been obtained. Ring-opening co-polymerization reactions of methylorganocyclotetrasiloxane and hexamethyldisiloxane, in the presence of catalytic amount of powder-like potassium hydroxide, have been carried out and linear methylsiloxane oligomer with regular arrangement of propyl acetoacetate and triethoxysilane groups in the side chain has been obtained. The synthesized methylorganocyclotetrasiloxane and oligomers were studied by FTIR,
H,
C,
Si NMR spectroscopy. Comb-type oligomers were characterized by gel-permeation chromatography, wide- angle X-ray and differential scanning calorimetric methods. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis- (trifluoromethylsulfonyl)imide oligomer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration has been studied. The electrical conductivity of these materials at room temperature belongs to the range of 7x10
to 4x10
S cm
and depends on the structures of grafted anion receptors and the polymer backbones. |
doi_str_mv | 10.1515/epoly.2012.12.1.1023 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1925840616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1925840616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c478t-a1ae17d542b51c2171ea89eeb4740261df19dbed095fdd13663053c288f88dad3</originalsourceid><addsrcrecordid>eNqlUEtLxDAQDqLguvoPPBQ8t2bSpk1PIosvWBB8nEPaTLVr29Ski_bfm3b34MmLMDDM8D1mPkLOgUbAgV9ib5oxYhRYNFUElMUHZAEpiDBjLD8kCwZ5FiZcpMfkxLkN9QgG2YI8PY_d8I6udoGpgtIa58Km7j5QB6Vpi3AYewwmeVc35lt1GFTGzosWbYANloP1w4BBi21hPcCdkqNKNQ7P9n1JXm9vXlb34frx7mF1vQ7LJBNDqEAhZJonrOBQ-mMAlcgRiyRLKEtBV5DrAjXNeaU1xGkaUx6XTIhKCK10vCQXO93ems8tukFuzNZ23lJCzrhIaAqpRyU71PybxUr2tm6VHSVQOaUn5_TklJ6cSk7pedpqR_tSzYBW45vd-i_tL48_6MBgr3L1P5X4ByeUkHI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1925840616</pqid></control><display><type>article</type><title>Synthesis of cross-linked comb-type polysiloxane for polymer electrolyte membranes</title><source>De Gruyter Journals - Open Access</source><creator>Mukbaniani, Omar ; Aneli, Jimsher ; Tatrishvili, Tamara ; Markarashvili, Eliza ; Chigvinadze, Maia ; Abadie, Marc Jean Medard</creator><creatorcontrib>Mukbaniani, Omar ; Aneli, Jimsher ; Tatrishvili, Tamara ; Markarashvili, Eliza ; Chigvinadze, Maia ; Abadie, Marc Jean Medard</creatorcontrib><description>Hydrosilylation reaction of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl acetoacetate and vinyltriethoxysilane at 1:3:1 ratio of initial compounds in the presence of Karstedt’s catalyst (Pt2[(VinSiMe2)2O]3), platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon have been studied and D
type methylorganocyclotetrasiloxane has been obtained. Ring-opening co-polymerization reactions of methylorganocyclotetrasiloxane and hexamethyldisiloxane, in the presence of catalytic amount of powder-like potassium hydroxide, have been carried out and linear methylsiloxane oligomer with regular arrangement of propyl acetoacetate and triethoxysilane groups in the side chain has been obtained. The synthesized methylorganocyclotetrasiloxane and oligomers were studied by FTIR,
H,
C,
Si NMR spectroscopy. Comb-type oligomers were characterized by gel-permeation chromatography, wide- angle X-ray and differential scanning calorimetric methods. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis- (trifluoromethylsulfonyl)imide oligomer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration has been studied. The electrical conductivity of these materials at room temperature belongs to the range of 7x10
to 4x10
S cm
and depends on the structures of grafted anion receptors and the polymer backbones.</description><identifier>ISSN: 2197-4586</identifier><identifier>ISSN: 1618-7229</identifier><identifier>EISSN: 1618-7229</identifier><identifier>DOI: 10.1515/epoly.2012.12.1.1023</identifier><language>eng</language><publisher>Berlin: De Gruyter</publisher><subject>Catalysts ; Chains (polymeric) ; Chemical synthesis ; Copolymerization ; cross-linking ; Crosslinking ; Differential scanning calorimetry ; Electrical resistivity ; Electrolytes ; Fourier transforms ; Heat measurement ; Hexamethyldisiloxane ; Hydrochloric acid ; Hydrosilylation ; Infrared spectroscopy ; Ion currents ; kinetics ; Lithium ; Materials science ; Membranes ; NMR spectroscopy ; Oligomers ; Platinum ; polyelectrolyte ; Polymerization ; Polymers ; polysiloxanes ; Potassium ; Spectroscopic analysis</subject><ispartof>e-Polymers, 2012-12, Vol.12 (1), p.1023-1036</ispartof><rights>Copyright Walter de Gruyter GmbH 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c478t-a1ae17d542b51c2171ea89eeb4740261df19dbed095fdd13663053c288f88dad3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.degruyter.com/document/doi/10.1515/epoly.2012.12.1.1023/pdf$$EPDF$$P50$$Gwalterdegruyter$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.degruyter.com/document/doi/10.1515/epoly.2012.12.1.1023/html$$EHTML$$P50$$Gwalterdegruyter$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,67158,68942</link.rule.ids></links><search><creatorcontrib>Mukbaniani, Omar</creatorcontrib><creatorcontrib>Aneli, Jimsher</creatorcontrib><creatorcontrib>Tatrishvili, Tamara</creatorcontrib><creatorcontrib>Markarashvili, Eliza</creatorcontrib><creatorcontrib>Chigvinadze, Maia</creatorcontrib><creatorcontrib>Abadie, Marc Jean Medard</creatorcontrib><title>Synthesis of cross-linked comb-type polysiloxane for polymer electrolyte membranes</title><title>e-Polymers</title><description>Hydrosilylation reaction of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl acetoacetate and vinyltriethoxysilane at 1:3:1 ratio of initial compounds in the presence of Karstedt’s catalyst (Pt2[(VinSiMe2)2O]3), platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon have been studied and D
type methylorganocyclotetrasiloxane has been obtained. Ring-opening co-polymerization reactions of methylorganocyclotetrasiloxane and hexamethyldisiloxane, in the presence of catalytic amount of powder-like potassium hydroxide, have been carried out and linear methylsiloxane oligomer with regular arrangement of propyl acetoacetate and triethoxysilane groups in the side chain has been obtained. The synthesized methylorganocyclotetrasiloxane and oligomers were studied by FTIR,
H,
C,
Si NMR spectroscopy. Comb-type oligomers were characterized by gel-permeation chromatography, wide- angle X-ray and differential scanning calorimetric methods. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis- (trifluoromethylsulfonyl)imide oligomer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration has been studied. The electrical conductivity of these materials at room temperature belongs to the range of 7x10
to 4x10
S cm
and depends on the structures of grafted anion receptors and the polymer backbones.</description><subject>Catalysts</subject><subject>Chains (polymeric)</subject><subject>Chemical synthesis</subject><subject>Copolymerization</subject><subject>cross-linking</subject><subject>Crosslinking</subject><subject>Differential scanning calorimetry</subject><subject>Electrical resistivity</subject><subject>Electrolytes</subject><subject>Fourier transforms</subject><subject>Heat measurement</subject><subject>Hexamethyldisiloxane</subject><subject>Hydrochloric acid</subject><subject>Hydrosilylation</subject><subject>Infrared spectroscopy</subject><subject>Ion currents</subject><subject>kinetics</subject><subject>Lithium</subject><subject>Materials science</subject><subject>Membranes</subject><subject>NMR spectroscopy</subject><subject>Oligomers</subject><subject>Platinum</subject><subject>polyelectrolyte</subject><subject>Polymerization</subject><subject>Polymers</subject><subject>polysiloxanes</subject><subject>Potassium</subject><subject>Spectroscopic analysis</subject><issn>2197-4586</issn><issn>1618-7229</issn><issn>1618-7229</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqlUEtLxDAQDqLguvoPPBQ8t2bSpk1PIosvWBB8nEPaTLVr29Ski_bfm3b34MmLMDDM8D1mPkLOgUbAgV9ib5oxYhRYNFUElMUHZAEpiDBjLD8kCwZ5FiZcpMfkxLkN9QgG2YI8PY_d8I6udoGpgtIa58Km7j5QB6Vpi3AYewwmeVc35lt1GFTGzosWbYANloP1w4BBi21hPcCdkqNKNQ7P9n1JXm9vXlb34frx7mF1vQ7LJBNDqEAhZJonrOBQ-mMAlcgRiyRLKEtBV5DrAjXNeaU1xGkaUx6XTIhKCK10vCQXO93ems8tukFuzNZ23lJCzrhIaAqpRyU71PybxUr2tm6VHSVQOaUn5_TklJ6cSk7pedpqR_tSzYBW45vd-i_tL48_6MBgr3L1P5X4ByeUkHI</recordid><startdate>201212</startdate><enddate>201212</enddate><creator>Mukbaniani, Omar</creator><creator>Aneli, Jimsher</creator><creator>Tatrishvili, Tamara</creator><creator>Markarashvili, Eliza</creator><creator>Chigvinadze, Maia</creator><creator>Abadie, Marc Jean Medard</creator><general>De Gruyter</general><general>Walter de Gruyter GmbH</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201212</creationdate><title>Synthesis of cross-linked comb-type polysiloxane for polymer electrolyte membranes</title><author>Mukbaniani, Omar ; Aneli, Jimsher ; Tatrishvili, Tamara ; Markarashvili, Eliza ; Chigvinadze, Maia ; Abadie, Marc Jean Medard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c478t-a1ae17d542b51c2171ea89eeb4740261df19dbed095fdd13663053c288f88dad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Catalysts</topic><topic>Chains (polymeric)</topic><topic>Chemical synthesis</topic><topic>Copolymerization</topic><topic>cross-linking</topic><topic>Crosslinking</topic><topic>Differential scanning calorimetry</topic><topic>Electrical resistivity</topic><topic>Electrolytes</topic><topic>Fourier transforms</topic><topic>Heat measurement</topic><topic>Hexamethyldisiloxane</topic><topic>Hydrochloric acid</topic><topic>Hydrosilylation</topic><topic>Infrared spectroscopy</topic><topic>Ion currents</topic><topic>kinetics</topic><topic>Lithium</topic><topic>Materials science</topic><topic>Membranes</topic><topic>NMR spectroscopy</topic><topic>Oligomers</topic><topic>Platinum</topic><topic>polyelectrolyte</topic><topic>Polymerization</topic><topic>Polymers</topic><topic>polysiloxanes</topic><topic>Potassium</topic><topic>Spectroscopic analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mukbaniani, Omar</creatorcontrib><creatorcontrib>Aneli, Jimsher</creatorcontrib><creatorcontrib>Tatrishvili, Tamara</creatorcontrib><creatorcontrib>Markarashvili, Eliza</creatorcontrib><creatorcontrib>Chigvinadze, Maia</creatorcontrib><creatorcontrib>Abadie, Marc Jean Medard</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>e-Polymers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mukbaniani, Omar</au><au>Aneli, Jimsher</au><au>Tatrishvili, Tamara</au><au>Markarashvili, Eliza</au><au>Chigvinadze, Maia</au><au>Abadie, Marc Jean Medard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis of cross-linked comb-type polysiloxane for polymer electrolyte membranes</atitle><jtitle>e-Polymers</jtitle><date>2012-12</date><risdate>2012</risdate><volume>12</volume><issue>1</issue><spage>1023</spage><epage>1036</epage><pages>1023-1036</pages><issn>2197-4586</issn><issn>1618-7229</issn><eissn>1618-7229</eissn><abstract>Hydrosilylation reaction of 2.4.6.8-tetrahydro-2.4.6.8-tetramethylcyclotetrasiloxane with allyl acetoacetate and vinyltriethoxysilane at 1:3:1 ratio of initial compounds in the presence of Karstedt’s catalyst (Pt2[(VinSiMe2)2O]3), platinum hydrochloric acid (0.1 M solution in THF) and platinum on the carbon have been studied and D
type methylorganocyclotetrasiloxane has been obtained. Ring-opening co-polymerization reactions of methylorganocyclotetrasiloxane and hexamethyldisiloxane, in the presence of catalytic amount of powder-like potassium hydroxide, have been carried out and linear methylsiloxane oligomer with regular arrangement of propyl acetoacetate and triethoxysilane groups in the side chain has been obtained. The synthesized methylorganocyclotetrasiloxane and oligomers were studied by FTIR,
H,
C,
Si NMR spectroscopy. Comb-type oligomers were characterized by gel-permeation chromatography, wide- angle X-ray and differential scanning calorimetric methods. Via sol-gel processes of doped with lithium trifluoromethylsulfonate (triflate) or lithium bis- (trifluoromethylsulfonyl)imide oligomer systems solid polymer electrolyte membranes have been obtained. The dependence of ionic conductivity as a function of temperature and salt concentration has been studied. The electrical conductivity of these materials at room temperature belongs to the range of 7x10
to 4x10
S cm
and depends on the structures of grafted anion receptors and the polymer backbones.</abstract><cop>Berlin</cop><pub>De Gruyter</pub><doi>10.1515/epoly.2012.12.1.1023</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2197-4586 |
ispartof | e-Polymers, 2012-12, Vol.12 (1), p.1023-1036 |
issn | 2197-4586 1618-7229 1618-7229 |
language | eng |
recordid | cdi_proquest_journals_1925840616 |
source | De Gruyter Journals - Open Access |
subjects | Catalysts Chains (polymeric) Chemical synthesis Copolymerization cross-linking Crosslinking Differential scanning calorimetry Electrical resistivity Electrolytes Fourier transforms Heat measurement Hexamethyldisiloxane Hydrochloric acid Hydrosilylation Infrared spectroscopy Ion currents kinetics Lithium Materials science Membranes NMR spectroscopy Oligomers Platinum polyelectrolyte Polymerization Polymers polysiloxanes Potassium Spectroscopic analysis |
title | Synthesis of cross-linked comb-type polysiloxane for polymer electrolyte membranes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T19%3A09%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20of%20cross-linked%20comb-type%20polysiloxane%20for%20polymer%20electrolyte%20membranes&rft.jtitle=e-Polymers&rft.au=Mukbaniani,%20Omar&rft.date=2012-12&rft.volume=12&rft.issue=1&rft.spage=1023&rft.epage=1036&rft.pages=1023-1036&rft.issn=2197-4586&rft.eissn=1618-7229&rft_id=info:doi/10.1515/epoly.2012.12.1.1023&rft_dat=%3Cproquest_cross%3E1925840616%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c478t-a1ae17d542b51c2171ea89eeb4740261df19dbed095fdd13663053c288f88dad3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1925840616&rft_id=info:pmid/&rfr_iscdi=true |