Loading…

Comparative study on the effects of superheated water and high temperature alkaline hydrolysis on wool keratin

The purpose of this work is to understand the impact of superheated water hydrolysis treatment on the chemical properties of wool, and compare it with a conventional method of alkaline hydrolysis. The effects of hydrolysis temperature and concentration of alkali on the properties of wool were invest...

Full description

Saved in:
Bibliographic Details
Published in:Textile research journal 2017-09, Vol.87 (14), p.1696-1705
Main Authors: Bhavsar, Parag, Zoccola, Marina, Patrucco, Alessia, Montarsolo, Alessio, Rovero, Giorgio, Tonin, Claudio
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The purpose of this work is to understand the impact of superheated water hydrolysis treatment on the chemical properties of wool, and compare it with a conventional method of alkaline hydrolysis. The effects of hydrolysis temperature and concentration of alkali on the properties of wool were investigated. Superheated water hydrolysis was carried out at the temperatures of 140℃ and 170℃, with a material to liquor ratio of 1:3 for 1 hour. In conventional alkaline hydrolysis, the experiments were carried out in the same conditions using potassium hydroxide (KOH) and calcium oxide (CaO) with a concentration in the range of 5%–15% on the fiber weight (o.w.f.). The effects of hydrolysis temperature and alkali concentrations on wool properties were checked using optical and scanning electron microscopy. It was observed that the hydrolyzates obtained in both cases contained low molecular weight proteins and amino acids. Both the hydrolysis processes resulted in degradation of the wool fibers. However, superheated steam hydrolysis is an environmentally friendly and less expensive process, as it is performed using water as a solvent. The wool hydrolyzates produced using superheated water hydrolysis could find a potential application in agriculture, such as fertilization, soil improvement and suchlike.
ISSN:0040-5175
1746-7748
DOI:10.1177/0040517516658512