Loading…

How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation

It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide...

Full description

Saved in:
Bibliographic Details
Published in:Energy technology (Weinheim, Germany) Germany), 2017-08, Vol.5 (8), p.1242-1249
Main Authors: Schröder, Daniel, Bender, Conrad L., Pinedo, Ricardo, Bartuli, Waldemar, Schwab, Matthias G., Tomović, Željko, Janek, Jürgen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003
cites cdi_FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003
container_end_page 1249
container_issue 8
container_start_page 1242
container_title Energy technology (Weinheim, Germany)
container_volume 5
creator Schröder, Daniel
Bender, Conrad L.
Pinedo, Ricardo
Bartuli, Waldemar
Schwab, Matthias G.
Tomović, Željko
Janek, Jürgen
description It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide are presented: First, cells loaded with sodium superoxide are further discharged in argon, with the aim of reducing sodium superoxide to peroxide. Second, carbon nanotube electrodes preloaded with sodium peroxide are utilized. Third, sodium peroxide is dissolved in the electrolyte to enhance precipitation of solid sodium peroxide. Interestingly, all approaches yield sodium superoxide as a discharge product. Thus, it might not be possible to have high energy density sodium–oxygen batteries with sodium peroxide as the discharge product. However, potential pathways for peroxide formation during discharge have been excluded to help to find the true factors that govern the competition between superoxide and peroxide formation. To be peroxide, or not to be: Three approaches are investigated to achieve sodium peroxide, with potentially higher energy density, as the sole discharge product in sodium–oxygen batteries. Interestingly, all three approaches yield sodium superoxide as the discharge product, leaving room for further research.
doi_str_mv 10.1002/ente.201600539
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927725184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927725184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003</originalsourceid><addsrcrecordid>eNqFkEFPwjAUgBujiQS5em7iedh23dZ5UwQxIUAinpeyvkEJrNh2Gbv5H_yH_hJHMHj09N7h-95LPoRuKelTQtg9lB76jNCYkChML1CH0ZQHnKXx5XkX4hr1nNsQQmhLRSTsoHpsauwNHpjSW7PFfg34Wbt8Le0K8NwaVeUe6xK_GaWr3ffn1-zQrKDET9J7sBrcw5HaG6fLFZ5CjefSr2vZOFwY-2vhOVhz0ArwyNid9NqUN-iqkFsHvd_ZRe-j4WIwDiazl9fB4yTIw4ingQLJlIxYHBdJkfBQpCQO0yUwwVkRJrminCjBOKcsVkmUA01yWSyFWELMIkLCLro73d1b81GB89nGVLZsX2Y0ZUnCIip4S_VPVG6NcxaKbG_1TtomoyQ79s2OfbNz31ZIT0Ktt9D8Q2fD6WL45_4A3UeAfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927725184</pqid></control><display><type>article</type><title>How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation</title><source>Wiley</source><creator>Schröder, Daniel ; Bender, Conrad L. ; Pinedo, Ricardo ; Bartuli, Waldemar ; Schwab, Matthias G. ; Tomović, Željko ; Janek, Jürgen</creator><creatorcontrib>Schröder, Daniel ; Bender, Conrad L. ; Pinedo, Ricardo ; Bartuli, Waldemar ; Schwab, Matthias G. ; Tomović, Željko ; Janek, Jürgen</creatorcontrib><description>It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide are presented: First, cells loaded with sodium superoxide are further discharged in argon, with the aim of reducing sodium superoxide to peroxide. Second, carbon nanotube electrodes preloaded with sodium peroxide are utilized. Third, sodium peroxide is dissolved in the electrolyte to enhance precipitation of solid sodium peroxide. Interestingly, all approaches yield sodium superoxide as a discharge product. Thus, it might not be possible to have high energy density sodium–oxygen batteries with sodium peroxide as the discharge product. However, potential pathways for peroxide formation during discharge have been excluded to help to find the true factors that govern the competition between superoxide and peroxide formation. To be peroxide, or not to be: Three approaches are investigated to achieve sodium peroxide, with potentially higher energy density, as the sole discharge product in sodium–oxygen batteries. Interestingly, all three approaches yield sodium superoxide as the discharge product, leaving room for further research.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201600539</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Argon ; Batteries ; carbon nanotubes ; Chemical precipitation ; Competition ; Density ; Discharge ; electrochemistry ; Electrolytic cells ; Energy ; Flux density ; Oxygen ; peroxides ; reaction mechanisms ; Sodium ; sodium oxygen batteries</subject><ispartof>Energy technology (Weinheim, Germany), 2017-08, Vol.5 (8), p.1242-1249</ispartof><rights>2017 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003</citedby><cites>FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003</cites><orcidid>0000-0002-2198-0218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schröder, Daniel</creatorcontrib><creatorcontrib>Bender, Conrad L.</creatorcontrib><creatorcontrib>Pinedo, Ricardo</creatorcontrib><creatorcontrib>Bartuli, Waldemar</creatorcontrib><creatorcontrib>Schwab, Matthias G.</creatorcontrib><creatorcontrib>Tomović, Željko</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><title>How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation</title><title>Energy technology (Weinheim, Germany)</title><description>It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide are presented: First, cells loaded with sodium superoxide are further discharged in argon, with the aim of reducing sodium superoxide to peroxide. Second, carbon nanotube electrodes preloaded with sodium peroxide are utilized. Third, sodium peroxide is dissolved in the electrolyte to enhance precipitation of solid sodium peroxide. Interestingly, all approaches yield sodium superoxide as a discharge product. Thus, it might not be possible to have high energy density sodium–oxygen batteries with sodium peroxide as the discharge product. However, potential pathways for peroxide formation during discharge have been excluded to help to find the true factors that govern the competition between superoxide and peroxide formation. To be peroxide, or not to be: Three approaches are investigated to achieve sodium peroxide, with potentially higher energy density, as the sole discharge product in sodium–oxygen batteries. Interestingly, all three approaches yield sodium superoxide as the discharge product, leaving room for further research.</description><subject>Argon</subject><subject>Batteries</subject><subject>carbon nanotubes</subject><subject>Chemical precipitation</subject><subject>Competition</subject><subject>Density</subject><subject>Discharge</subject><subject>electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Flux density</subject><subject>Oxygen</subject><subject>peroxides</subject><subject>reaction mechanisms</subject><subject>Sodium</subject><subject>sodium oxygen batteries</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAUgBujiQS5em7iedh23dZ5UwQxIUAinpeyvkEJrNh2Gbv5H_yH_hJHMHj09N7h-95LPoRuKelTQtg9lB76jNCYkChML1CH0ZQHnKXx5XkX4hr1nNsQQmhLRSTsoHpsauwNHpjSW7PFfg34Wbt8Le0K8NwaVeUe6xK_GaWr3ffn1-zQrKDET9J7sBrcw5HaG6fLFZ5CjefSr2vZOFwY-2vhOVhz0ArwyNid9NqUN-iqkFsHvd_ZRe-j4WIwDiazl9fB4yTIw4ingQLJlIxYHBdJkfBQpCQO0yUwwVkRJrminCjBOKcsVkmUA01yWSyFWELMIkLCLro73d1b81GB89nGVLZsX2Y0ZUnCIip4S_VPVG6NcxaKbG_1TtomoyQ79s2OfbNz31ZIT0Ktt9D8Q2fD6WL45_4A3UeAfA</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Schröder, Daniel</creator><creator>Bender, Conrad L.</creator><creator>Pinedo, Ricardo</creator><creator>Bartuli, Waldemar</creator><creator>Schwab, Matthias G.</creator><creator>Tomović, Željko</creator><creator>Janek, Jürgen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2198-0218</orcidid></search><sort><creationdate>201708</creationdate><title>How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation</title><author>Schröder, Daniel ; Bender, Conrad L. ; Pinedo, Ricardo ; Bartuli, Waldemar ; Schwab, Matthias G. ; Tomović, Željko ; Janek, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Argon</topic><topic>Batteries</topic><topic>carbon nanotubes</topic><topic>Chemical precipitation</topic><topic>Competition</topic><topic>Density</topic><topic>Discharge</topic><topic>electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Flux density</topic><topic>Oxygen</topic><topic>peroxides</topic><topic>reaction mechanisms</topic><topic>Sodium</topic><topic>sodium oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröder, Daniel</creatorcontrib><creatorcontrib>Bender, Conrad L.</creatorcontrib><creatorcontrib>Pinedo, Ricardo</creatorcontrib><creatorcontrib>Bartuli, Waldemar</creatorcontrib><creatorcontrib>Schwab, Matthias G.</creatorcontrib><creatorcontrib>Tomović, Željko</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröder, Daniel</au><au>Bender, Conrad L.</au><au>Pinedo, Ricardo</au><au>Bartuli, Waldemar</au><au>Schwab, Matthias G.</au><au>Tomović, Željko</au><au>Janek, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2017-08</date><risdate>2017</risdate><volume>5</volume><issue>8</issue><spage>1242</spage><epage>1249</epage><pages>1242-1249</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide are presented: First, cells loaded with sodium superoxide are further discharged in argon, with the aim of reducing sodium superoxide to peroxide. Second, carbon nanotube electrodes preloaded with sodium peroxide are utilized. Third, sodium peroxide is dissolved in the electrolyte to enhance precipitation of solid sodium peroxide. Interestingly, all approaches yield sodium superoxide as a discharge product. Thus, it might not be possible to have high energy density sodium–oxygen batteries with sodium peroxide as the discharge product. However, potential pathways for peroxide formation during discharge have been excluded to help to find the true factors that govern the competition between superoxide and peroxide formation. To be peroxide, or not to be: Three approaches are investigated to achieve sodium peroxide, with potentially higher energy density, as the sole discharge product in sodium–oxygen batteries. Interestingly, all three approaches yield sodium superoxide as the discharge product, leaving room for further research.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201600539</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2198-0218</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2194-4288
ispartof Energy technology (Weinheim, Germany), 2017-08, Vol.5 (8), p.1242-1249
issn 2194-4288
2194-4296
language eng
recordid cdi_proquest_journals_1927725184
source Wiley
subjects Argon
Batteries
carbon nanotubes
Chemical precipitation
Competition
Density
Discharge
electrochemistry
Electrolytic cells
Energy
Flux density
Oxygen
peroxides
reaction mechanisms
Sodium
sodium oxygen batteries
title How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Control%20the%20Discharge%20Product%20in%20Sodium%E2%80%93Oxygen%20Batteries:%20Proposing%20New%20Pathways%20for%20Sodium%20Peroxide%20Formation&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Schr%C3%B6der,%20Daniel&rft.date=2017-08&rft.volume=5&rft.issue=8&rft.spage=1242&rft.epage=1249&rft.pages=1242-1249&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201600539&rft_dat=%3Cproquest_cross%3E1927725184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1927725184&rft_id=info:pmid/&rfr_iscdi=true