Loading…
How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation
It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide...
Saved in:
Published in: | Energy technology (Weinheim, Germany) Germany), 2017-08, Vol.5 (8), p.1242-1249 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003 |
---|---|
cites | cdi_FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003 |
container_end_page | 1249 |
container_issue | 8 |
container_start_page | 1242 |
container_title | Energy technology (Weinheim, Germany) |
container_volume | 5 |
creator | Schröder, Daniel Bender, Conrad L. Pinedo, Ricardo Bartuli, Waldemar Schwab, Matthias G. Tomović, Željko Janek, Jürgen |
description | It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide are presented: First, cells loaded with sodium superoxide are further discharged in argon, with the aim of reducing sodium superoxide to peroxide. Second, carbon nanotube electrodes preloaded with sodium peroxide are utilized. Third, sodium peroxide is dissolved in the electrolyte to enhance precipitation of solid sodium peroxide. Interestingly, all approaches yield sodium superoxide as a discharge product. Thus, it might not be possible to have high energy density sodium–oxygen batteries with sodium peroxide as the discharge product. However, potential pathways for peroxide formation during discharge have been excluded to help to find the true factors that govern the competition between superoxide and peroxide formation.
To be peroxide, or not to be: Three approaches are investigated to achieve sodium peroxide, with potentially higher energy density, as the sole discharge product in sodium–oxygen batteries. Interestingly, all three approaches yield sodium superoxide as the discharge product, leaving room for further research. |
doi_str_mv | 10.1002/ente.201600539 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1927725184</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1927725184</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003</originalsourceid><addsrcrecordid>eNqFkEFPwjAUgBujiQS5em7iedh23dZ5UwQxIUAinpeyvkEJrNh2Gbv5H_yH_hJHMHj09N7h-95LPoRuKelTQtg9lB76jNCYkChML1CH0ZQHnKXx5XkX4hr1nNsQQmhLRSTsoHpsauwNHpjSW7PFfg34Wbt8Le0K8NwaVeUe6xK_GaWr3ffn1-zQrKDET9J7sBrcw5HaG6fLFZ5CjefSr2vZOFwY-2vhOVhz0ArwyNid9NqUN-iqkFsHvd_ZRe-j4WIwDiazl9fB4yTIw4ingQLJlIxYHBdJkfBQpCQO0yUwwVkRJrminCjBOKcsVkmUA01yWSyFWELMIkLCLro73d1b81GB89nGVLZsX2Y0ZUnCIip4S_VPVG6NcxaKbG_1TtomoyQ79s2OfbNz31ZIT0Ktt9D8Q2fD6WL45_4A3UeAfA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1927725184</pqid></control><display><type>article</type><title>How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation</title><source>Wiley</source><creator>Schröder, Daniel ; Bender, Conrad L. ; Pinedo, Ricardo ; Bartuli, Waldemar ; Schwab, Matthias G. ; Tomović, Željko ; Janek, Jürgen</creator><creatorcontrib>Schröder, Daniel ; Bender, Conrad L. ; Pinedo, Ricardo ; Bartuli, Waldemar ; Schwab, Matthias G. ; Tomović, Željko ; Janek, Jürgen</creatorcontrib><description>It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide are presented: First, cells loaded with sodium superoxide are further discharged in argon, with the aim of reducing sodium superoxide to peroxide. Second, carbon nanotube electrodes preloaded with sodium peroxide are utilized. Third, sodium peroxide is dissolved in the electrolyte to enhance precipitation of solid sodium peroxide. Interestingly, all approaches yield sodium superoxide as a discharge product. Thus, it might not be possible to have high energy density sodium–oxygen batteries with sodium peroxide as the discharge product. However, potential pathways for peroxide formation during discharge have been excluded to help to find the true factors that govern the competition between superoxide and peroxide formation.
To be peroxide, or not to be: Three approaches are investigated to achieve sodium peroxide, with potentially higher energy density, as the sole discharge product in sodium–oxygen batteries. Interestingly, all three approaches yield sodium superoxide as the discharge product, leaving room for further research.</description><identifier>ISSN: 2194-4288</identifier><identifier>EISSN: 2194-4296</identifier><identifier>DOI: 10.1002/ente.201600539</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Argon ; Batteries ; carbon nanotubes ; Chemical precipitation ; Competition ; Density ; Discharge ; electrochemistry ; Electrolytic cells ; Energy ; Flux density ; Oxygen ; peroxides ; reaction mechanisms ; Sodium ; sodium oxygen batteries</subject><ispartof>Energy technology (Weinheim, Germany), 2017-08, Vol.5 (8), p.1242-1249</ispartof><rights>2017 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003</citedby><cites>FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003</cites><orcidid>0000-0002-2198-0218</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schröder, Daniel</creatorcontrib><creatorcontrib>Bender, Conrad L.</creatorcontrib><creatorcontrib>Pinedo, Ricardo</creatorcontrib><creatorcontrib>Bartuli, Waldemar</creatorcontrib><creatorcontrib>Schwab, Matthias G.</creatorcontrib><creatorcontrib>Tomović, Željko</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><title>How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation</title><title>Energy technology (Weinheim, Germany)</title><description>It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide are presented: First, cells loaded with sodium superoxide are further discharged in argon, with the aim of reducing sodium superoxide to peroxide. Second, carbon nanotube electrodes preloaded with sodium peroxide are utilized. Third, sodium peroxide is dissolved in the electrolyte to enhance precipitation of solid sodium peroxide. Interestingly, all approaches yield sodium superoxide as a discharge product. Thus, it might not be possible to have high energy density sodium–oxygen batteries with sodium peroxide as the discharge product. However, potential pathways for peroxide formation during discharge have been excluded to help to find the true factors that govern the competition between superoxide and peroxide formation.
To be peroxide, or not to be: Three approaches are investigated to achieve sodium peroxide, with potentially higher energy density, as the sole discharge product in sodium–oxygen batteries. Interestingly, all three approaches yield sodium superoxide as the discharge product, leaving room for further research.</description><subject>Argon</subject><subject>Batteries</subject><subject>carbon nanotubes</subject><subject>Chemical precipitation</subject><subject>Competition</subject><subject>Density</subject><subject>Discharge</subject><subject>electrochemistry</subject><subject>Electrolytic cells</subject><subject>Energy</subject><subject>Flux density</subject><subject>Oxygen</subject><subject>peroxides</subject><subject>reaction mechanisms</subject><subject>Sodium</subject><subject>sodium oxygen batteries</subject><issn>2194-4288</issn><issn>2194-4296</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNqFkEFPwjAUgBujiQS5em7iedh23dZ5UwQxIUAinpeyvkEJrNh2Gbv5H_yH_hJHMHj09N7h-95LPoRuKelTQtg9lB76jNCYkChML1CH0ZQHnKXx5XkX4hr1nNsQQmhLRSTsoHpsauwNHpjSW7PFfg34Wbt8Le0K8NwaVeUe6xK_GaWr3ffn1-zQrKDET9J7sBrcw5HaG6fLFZ5CjefSr2vZOFwY-2vhOVhz0ArwyNid9NqUN-iqkFsHvd_ZRe-j4WIwDiazl9fB4yTIw4ingQLJlIxYHBdJkfBQpCQO0yUwwVkRJrminCjBOKcsVkmUA01yWSyFWELMIkLCLro73d1b81GB89nGVLZsX2Y0ZUnCIip4S_VPVG6NcxaKbG_1TtomoyQ79s2OfbNz31ZIT0Ktt9D8Q2fD6WL45_4A3UeAfA</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Schröder, Daniel</creator><creator>Bender, Conrad L.</creator><creator>Pinedo, Ricardo</creator><creator>Bartuli, Waldemar</creator><creator>Schwab, Matthias G.</creator><creator>Tomović, Željko</creator><creator>Janek, Jürgen</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2198-0218</orcidid></search><sort><creationdate>201708</creationdate><title>How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation</title><author>Schröder, Daniel ; Bender, Conrad L. ; Pinedo, Ricardo ; Bartuli, Waldemar ; Schwab, Matthias G. ; Tomović, Željko ; Janek, Jürgen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Argon</topic><topic>Batteries</topic><topic>carbon nanotubes</topic><topic>Chemical precipitation</topic><topic>Competition</topic><topic>Density</topic><topic>Discharge</topic><topic>electrochemistry</topic><topic>Electrolytic cells</topic><topic>Energy</topic><topic>Flux density</topic><topic>Oxygen</topic><topic>peroxides</topic><topic>reaction mechanisms</topic><topic>Sodium</topic><topic>sodium oxygen batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schröder, Daniel</creatorcontrib><creatorcontrib>Bender, Conrad L.</creatorcontrib><creatorcontrib>Pinedo, Ricardo</creatorcontrib><creatorcontrib>Bartuli, Waldemar</creatorcontrib><creatorcontrib>Schwab, Matthias G.</creatorcontrib><creatorcontrib>Tomović, Željko</creatorcontrib><creatorcontrib>Janek, Jürgen</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Energy technology (Weinheim, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schröder, Daniel</au><au>Bender, Conrad L.</au><au>Pinedo, Ricardo</au><au>Bartuli, Waldemar</au><au>Schwab, Matthias G.</au><au>Tomović, Željko</au><au>Janek, Jürgen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation</atitle><jtitle>Energy technology (Weinheim, Germany)</jtitle><date>2017-08</date><risdate>2017</risdate><volume>5</volume><issue>8</issue><spage>1242</spage><epage>1249</epage><pages>1242-1249</pages><issn>2194-4288</issn><eissn>2194-4296</eissn><abstract>It is an unsolved problem how to steer between sodium superoxide and sodium peroxide as discharge products in sodium–oxygen batteries. Sodium peroxide yields a higher theoretical energy density; thus, it is preferred in view of maximized energy density. Three novel approaches to form sodium peroxide are presented: First, cells loaded with sodium superoxide are further discharged in argon, with the aim of reducing sodium superoxide to peroxide. Second, carbon nanotube electrodes preloaded with sodium peroxide are utilized. Third, sodium peroxide is dissolved in the electrolyte to enhance precipitation of solid sodium peroxide. Interestingly, all approaches yield sodium superoxide as a discharge product. Thus, it might not be possible to have high energy density sodium–oxygen batteries with sodium peroxide as the discharge product. However, potential pathways for peroxide formation during discharge have been excluded to help to find the true factors that govern the competition between superoxide and peroxide formation.
To be peroxide, or not to be: Three approaches are investigated to achieve sodium peroxide, with potentially higher energy density, as the sole discharge product in sodium–oxygen batteries. Interestingly, all three approaches yield sodium superoxide as the discharge product, leaving room for further research.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ente.201600539</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2198-0218</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2194-4288 |
ispartof | Energy technology (Weinheim, Germany), 2017-08, Vol.5 (8), p.1242-1249 |
issn | 2194-4288 2194-4296 |
language | eng |
recordid | cdi_proquest_journals_1927725184 |
source | Wiley |
subjects | Argon Batteries carbon nanotubes Chemical precipitation Competition Density Discharge electrochemistry Electrolytic cells Energy Flux density Oxygen peroxides reaction mechanisms Sodium sodium oxygen batteries |
title | How to Control the Discharge Product in Sodium–Oxygen Batteries: Proposing New Pathways for Sodium Peroxide Formation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A36%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20to%20Control%20the%20Discharge%20Product%20in%20Sodium%E2%80%93Oxygen%20Batteries:%20Proposing%20New%20Pathways%20for%20Sodium%20Peroxide%20Formation&rft.jtitle=Energy%20technology%20(Weinheim,%20Germany)&rft.au=Schr%C3%B6der,%20Daniel&rft.date=2017-08&rft.volume=5&rft.issue=8&rft.spage=1242&rft.epage=1249&rft.pages=1242-1249&rft.issn=2194-4288&rft.eissn=2194-4296&rft_id=info:doi/10.1002/ente.201600539&rft_dat=%3Cproquest_cross%3E1927725184%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3549-dea2da5266f7f743890639be2842f37cd140d8244126d75ce17cafb88be625003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1927725184&rft_id=info:pmid/&rfr_iscdi=true |