Loading…
Robust online monitoring of signal temporal logic
Signal temporal logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog components. STL is naturally equipped with a quantitative semantics which can...
Saved in:
Published in: | Formal methods in system design 2017-08, Vol.51 (1), p.5-30 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Signal temporal logic (STL) is a formalism used to rigorously specify requirements of cyberphysical systems (CPS), i.e., systems mixing digital or discrete components in interaction with a continuous environment or analog components. STL is naturally equipped with a quantitative semantics which can be used for various purposes: from assessing the robustness of a specification to guiding searches over the input and parameter space with the goal of falsifying the given property over system behaviors. Algorithms have been proposed and implemented for
offline
computation of such quantitative semantics, but only few methods exist for an
online
setting, where one would want to monitor the satisfaction of a formula during simulation. In this paper, we formalize a semantics for robust online monitoring of
partial
traces, i.e., traces for which there might not be enough data to decide the Boolean satisfaction (and to compute its quantitative counterpart). We propose an efficient algorithm to compute it and demonstrate its usage on two large scale real-world case studies coming from the automotive domain and from CPS education in a Massively Open Online Course setting. We show that savings in computationally expensive simulations far outweigh any overheads incurred by an online approach. |
---|---|
ISSN: | 0925-9856 1572-8102 |
DOI: | 10.1007/s10703-017-0286-7 |