Loading…

Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere

This paper studies the interaction of internal gravity waves (IGW) with neutral wind using the statistics of traveling ionospheric disturbances (TID) from the Radio Physical Complex of the Institute of Solar‐Terrestrial Physics. The complex includes the Irkutsk Incoherent Scatter Radar (IISR), Irkut...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2017-07, Vol.122 (7), p.7567-7580
Main Authors: Medvedev, А. V., Ratovsky, K. G., Tolstikov, M. V., Oinats, A. V., Alsatkin, S. S., Zherebtsov, G. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3073-ed8f4499499223b978a9b82cad8243772fc057ef63baa6c897711f00414506213
cites cdi_FETCH-LOGICAL-c3073-ed8f4499499223b978a9b82cad8243772fc057ef63baa6c897711f00414506213
container_end_page 7580
container_issue 7
container_start_page 7567
container_title Journal of geophysical research. Space physics
container_volume 122
creator Medvedev, А. V.
Ratovsky, K. G.
Tolstikov, M. V.
Oinats, A. V.
Alsatkin, S. S.
Zherebtsov, G. A.
description This paper studies the interaction of internal gravity waves (IGW) with neutral wind using the statistics of traveling ionospheric disturbances (TID) from the Radio Physical Complex of the Institute of Solar‐Terrestrial Physics. The complex includes the Irkutsk Incoherent Scatter Radar (IISR), Irkutsk Ionosonde (DPS‐4), and Ekaterinburg HF Radar (EKB). The aim of this study is to give a common explanation for the TID azimuth distributions obtained with the IISR‐ionosonde and HF coherent radar and show that the measurements of 3‐D TID characteristics put into the hands of researchers an important tool to study neutral wind in the thermosphere. The distinctive features of this study are the following: (1) using different TID statistics from independent tools and, correspondingly, independent methods for determining TID characteristics; (2) using the 3‐D TID characteristics for testing the wind‐filtering hypothesis, which allows us to separate the IGW‐induced TIDs from TIDs of other nature and identify three TID types depending on their elevation angles; and (3) using the local time‐azimuth distribution of the TID number for testing the wind‐filtering hypothesis. This study allowed us to conclude that the observed IGW azimuth anisotropy can be mainly explained by the wind filtration mechanism with considering winds at 90–250 km heights. Using the 3‐D IGW characteristics allows us to estimate neutral wind parameters. Proposed methods are applicable for any tool which can obtain TID 3‐D characteristics. Using the proposed methods will enable us to organize a worldwide campaign to improve the existing neutral wind models. Key Points At least 60% of observed TID induced by IGW; TID LT‐azimuth distributions can be mainly explained by the wind filtration mechanism There are differences between azimuth distributions of three TID types (source below, source above, and reflected) Methods of neutral wind estimating were proposed
doi_str_mv 10.1002/2017JA024103
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1928082239</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928082239</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3073-ed8f4499499223b978a9b82cad8243772fc057ef63baa6c897711f00414506213</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWGpv_oCAV1cnyX4kx1K0WgpC0fOSpombst2sSbal_96UKnhyGJgPnnlhXoRuCTwQAPpIgVSLKdCcALtAI0pKkYkc6OVvzzhco0kIW0jB04oUI2RWupXRug47g20Xte9kiz-93Nt4xAe511h2NrjoXZ9mGxvc6SH6BB1st8GqkV6qdGZDtCokCRwbjYe-1x7LuHOhb7TXN-jKyDboyU8do4_np_fZS7Z8m7_OpstMMahYpjfc5LkQKSlla1FxKdacKrnhNGdVRY2CotKmZGspS8VFVRFiAHKSF1BSwsbo7qzbe_c16BDrrRtOL4WaCMqBJ1mRqPszpbwLwWtT997upD_WBOqTmfVfMxPOzvjBtvr4L1sv5qtpwUrG2DdrqXVf</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928082239</pqid></control><display><type>article</type><title>Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Medvedev, А. V. ; Ratovsky, K. G. ; Tolstikov, M. V. ; Oinats, A. V. ; Alsatkin, S. S. ; Zherebtsov, G. A.</creator><creatorcontrib>Medvedev, А. V. ; Ratovsky, K. G. ; Tolstikov, M. V. ; Oinats, A. V. ; Alsatkin, S. S. ; Zherebtsov, G. A.</creatorcontrib><description>This paper studies the interaction of internal gravity waves (IGW) with neutral wind using the statistics of traveling ionospheric disturbances (TID) from the Radio Physical Complex of the Institute of Solar‐Terrestrial Physics. The complex includes the Irkutsk Incoherent Scatter Radar (IISR), Irkutsk Ionosonde (DPS‐4), and Ekaterinburg HF Radar (EKB). The aim of this study is to give a common explanation for the TID azimuth distributions obtained with the IISR‐ionosonde and HF coherent radar and show that the measurements of 3‐D TID characteristics put into the hands of researchers an important tool to study neutral wind in the thermosphere. The distinctive features of this study are the following: (1) using different TID statistics from independent tools and, correspondingly, independent methods for determining TID characteristics; (2) using the 3‐D TID characteristics for testing the wind‐filtering hypothesis, which allows us to separate the IGW‐induced TIDs from TIDs of other nature and identify three TID types depending on their elevation angles; and (3) using the local time‐azimuth distribution of the TID number for testing the wind‐filtering hypothesis. This study allowed us to conclude that the observed IGW azimuth anisotropy can be mainly explained by the wind filtration mechanism with considering winds at 90–250 km heights. Using the 3‐D IGW characteristics allows us to estimate neutral wind parameters. Proposed methods are applicable for any tool which can obtain TID 3‐D characteristics. Using the proposed methods will enable us to organize a worldwide campaign to improve the existing neutral wind models. Key Points At least 60% of observed TID induced by IGW; TID LT‐azimuth distributions can be mainly explained by the wind filtration mechanism There are differences between azimuth distributions of three TID types (source below, source above, and reflected) Methods of neutral wind estimating were proposed</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA024103</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Anisotropy ; Atmospheric models ; Azimuth ; Coherent radar ; Filtration ; Gravitational waves ; Gravity waves ; HF radar ; Hypotheses ; Incoherent scatter radar ; internal gravitational waves ; Internal gravity waves ; Internal waves ; Ionospheric disturbances ; ionsphere ; neutral wind ; Parameter estimation ; Radar ; Thermosphere ; Traveling ionospheric disturbances ; Upper atmosphere ; wave‐wind interaction ; Wind ; Wind models</subject><ispartof>Journal of geophysical research. Space physics, 2017-07, Vol.122 (7), p.7567-7580</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3073-ed8f4499499223b978a9b82cad8243772fc057ef63baa6c897711f00414506213</citedby><cites>FETCH-LOGICAL-c3073-ed8f4499499223b978a9b82cad8243772fc057ef63baa6c897711f00414506213</cites><orcidid>0000-0002-0847-3553 ; 0000-0002-9176-5425 ; 0000-0002-1120-870X ; 0000-0003-0660-8474</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Medvedev, А. V.</creatorcontrib><creatorcontrib>Ratovsky, K. G.</creatorcontrib><creatorcontrib>Tolstikov, M. V.</creatorcontrib><creatorcontrib>Oinats, A. V.</creatorcontrib><creatorcontrib>Alsatkin, S. S.</creatorcontrib><creatorcontrib>Zherebtsov, G. A.</creatorcontrib><title>Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere</title><title>Journal of geophysical research. Space physics</title><description>This paper studies the interaction of internal gravity waves (IGW) with neutral wind using the statistics of traveling ionospheric disturbances (TID) from the Radio Physical Complex of the Institute of Solar‐Terrestrial Physics. The complex includes the Irkutsk Incoherent Scatter Radar (IISR), Irkutsk Ionosonde (DPS‐4), and Ekaterinburg HF Radar (EKB). The aim of this study is to give a common explanation for the TID azimuth distributions obtained with the IISR‐ionosonde and HF coherent radar and show that the measurements of 3‐D TID characteristics put into the hands of researchers an important tool to study neutral wind in the thermosphere. The distinctive features of this study are the following: (1) using different TID statistics from independent tools and, correspondingly, independent methods for determining TID characteristics; (2) using the 3‐D TID characteristics for testing the wind‐filtering hypothesis, which allows us to separate the IGW‐induced TIDs from TIDs of other nature and identify three TID types depending on their elevation angles; and (3) using the local time‐azimuth distribution of the TID number for testing the wind‐filtering hypothesis. This study allowed us to conclude that the observed IGW azimuth anisotropy can be mainly explained by the wind filtration mechanism with considering winds at 90–250 km heights. Using the 3‐D IGW characteristics allows us to estimate neutral wind parameters. Proposed methods are applicable for any tool which can obtain TID 3‐D characteristics. Using the proposed methods will enable us to organize a worldwide campaign to improve the existing neutral wind models. Key Points At least 60% of observed TID induced by IGW; TID LT‐azimuth distributions can be mainly explained by the wind filtration mechanism There are differences between azimuth distributions of three TID types (source below, source above, and reflected) Methods of neutral wind estimating were proposed</description><subject>Anisotropy</subject><subject>Atmospheric models</subject><subject>Azimuth</subject><subject>Coherent radar</subject><subject>Filtration</subject><subject>Gravitational waves</subject><subject>Gravity waves</subject><subject>HF radar</subject><subject>Hypotheses</subject><subject>Incoherent scatter radar</subject><subject>internal gravitational waves</subject><subject>Internal gravity waves</subject><subject>Internal waves</subject><subject>Ionospheric disturbances</subject><subject>ionsphere</subject><subject>neutral wind</subject><subject>Parameter estimation</subject><subject>Radar</subject><subject>Thermosphere</subject><subject>Traveling ionospheric disturbances</subject><subject>Upper atmosphere</subject><subject>wave‐wind interaction</subject><subject>Wind</subject><subject>Wind models</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEQhoMoWGpv_oCAV1cnyX4kx1K0WgpC0fOSpombst2sSbal_96UKnhyGJgPnnlhXoRuCTwQAPpIgVSLKdCcALtAI0pKkYkc6OVvzzhco0kIW0jB04oUI2RWupXRug47g20Xte9kiz-93Nt4xAe511h2NrjoXZ9mGxvc6SH6BB1st8GqkV6qdGZDtCokCRwbjYe-1x7LuHOhb7TXN-jKyDboyU8do4_np_fZS7Z8m7_OpstMMahYpjfc5LkQKSlla1FxKdacKrnhNGdVRY2CotKmZGspS8VFVRFiAHKSF1BSwsbo7qzbe_c16BDrrRtOL4WaCMqBJ1mRqPszpbwLwWtT997upD_WBOqTmfVfMxPOzvjBtvr4L1sv5qtpwUrG2DdrqXVf</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>Medvedev, А. V.</creator><creator>Ratovsky, K. G.</creator><creator>Tolstikov, M. V.</creator><creator>Oinats, A. V.</creator><creator>Alsatkin, S. S.</creator><creator>Zherebtsov, G. A.</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0847-3553</orcidid><orcidid>https://orcid.org/0000-0002-9176-5425</orcidid><orcidid>https://orcid.org/0000-0002-1120-870X</orcidid><orcidid>https://orcid.org/0000-0003-0660-8474</orcidid></search><sort><creationdate>201707</creationdate><title>Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere</title><author>Medvedev, А. V. ; Ratovsky, K. G. ; Tolstikov, M. V. ; Oinats, A. V. ; Alsatkin, S. S. ; Zherebtsov, G. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3073-ed8f4499499223b978a9b82cad8243772fc057ef63baa6c897711f00414506213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Anisotropy</topic><topic>Atmospheric models</topic><topic>Azimuth</topic><topic>Coherent radar</topic><topic>Filtration</topic><topic>Gravitational waves</topic><topic>Gravity waves</topic><topic>HF radar</topic><topic>Hypotheses</topic><topic>Incoherent scatter radar</topic><topic>internal gravitational waves</topic><topic>Internal gravity waves</topic><topic>Internal waves</topic><topic>Ionospheric disturbances</topic><topic>ionsphere</topic><topic>neutral wind</topic><topic>Parameter estimation</topic><topic>Radar</topic><topic>Thermosphere</topic><topic>Traveling ionospheric disturbances</topic><topic>Upper atmosphere</topic><topic>wave‐wind interaction</topic><topic>Wind</topic><topic>Wind models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Medvedev, А. V.</creatorcontrib><creatorcontrib>Ratovsky, K. G.</creatorcontrib><creatorcontrib>Tolstikov, M. V.</creatorcontrib><creatorcontrib>Oinats, A. V.</creatorcontrib><creatorcontrib>Alsatkin, S. S.</creatorcontrib><creatorcontrib>Zherebtsov, G. A.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Medvedev, А. V.</au><au>Ratovsky, K. G.</au><au>Tolstikov, M. V.</au><au>Oinats, A. V.</au><au>Alsatkin, S. S.</au><au>Zherebtsov, G. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-07</date><risdate>2017</risdate><volume>122</volume><issue>7</issue><spage>7567</spage><epage>7580</epage><pages>7567-7580</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>This paper studies the interaction of internal gravity waves (IGW) with neutral wind using the statistics of traveling ionospheric disturbances (TID) from the Radio Physical Complex of the Institute of Solar‐Terrestrial Physics. The complex includes the Irkutsk Incoherent Scatter Radar (IISR), Irkutsk Ionosonde (DPS‐4), and Ekaterinburg HF Radar (EKB). The aim of this study is to give a common explanation for the TID azimuth distributions obtained with the IISR‐ionosonde and HF coherent radar and show that the measurements of 3‐D TID characteristics put into the hands of researchers an important tool to study neutral wind in the thermosphere. The distinctive features of this study are the following: (1) using different TID statistics from independent tools and, correspondingly, independent methods for determining TID characteristics; (2) using the 3‐D TID characteristics for testing the wind‐filtering hypothesis, which allows us to separate the IGW‐induced TIDs from TIDs of other nature and identify three TID types depending on their elevation angles; and (3) using the local time‐azimuth distribution of the TID number for testing the wind‐filtering hypothesis. This study allowed us to conclude that the observed IGW azimuth anisotropy can be mainly explained by the wind filtration mechanism with considering winds at 90–250 km heights. Using the 3‐D IGW characteristics allows us to estimate neutral wind parameters. Proposed methods are applicable for any tool which can obtain TID 3‐D characteristics. Using the proposed methods will enable us to organize a worldwide campaign to improve the existing neutral wind models. Key Points At least 60% of observed TID induced by IGW; TID LT‐azimuth distributions can be mainly explained by the wind filtration mechanism There are differences between azimuth distributions of three TID types (source below, source above, and reflected) Methods of neutral wind estimating were proposed</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA024103</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-0847-3553</orcidid><orcidid>https://orcid.org/0000-0002-9176-5425</orcidid><orcidid>https://orcid.org/0000-0002-1120-870X</orcidid><orcidid>https://orcid.org/0000-0003-0660-8474</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2017-07, Vol.122 (7), p.7567-7580
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_1928082239
source Wiley-Blackwell Read & Publish Collection
subjects Anisotropy
Atmospheric models
Azimuth
Coherent radar
Filtration
Gravitational waves
Gravity waves
HF radar
Hypotheses
Incoherent scatter radar
internal gravitational waves
Internal gravity waves
Internal waves
Ionospheric disturbances
ionsphere
neutral wind
Parameter estimation
Radar
Thermosphere
Traveling ionospheric disturbances
Upper atmosphere
wave‐wind interaction
Wind
Wind models
title Relation of internal gravity wave anisotropy with neutral wind characteristics in the upper atmosphere
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T03%3A52%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20of%20internal%20gravity%20wave%20anisotropy%20with%20neutral%20wind%20characteristics%20in%20the%20upper%20atmosphere&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=Medvedev,%20%D0%90.%20V.&rft.date=2017-07&rft.volume=122&rft.issue=7&rft.spage=7567&rft.epage=7580&rft.pages=7567-7580&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA024103&rft_dat=%3Cproquest_cross%3E1928082239%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3073-ed8f4499499223b978a9b82cad8243772fc057ef63baa6c897711f00414506213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1928082239&rft_id=info:pmid/&rfr_iscdi=true