Loading…
A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation
A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–201...
Saved in:
Published in: | Journal of geophysical research. Space physics 2017-07, Vol.122 (7), p.7172-7187 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3 |
container_end_page | 7187 |
container_issue | 7 |
container_start_page | 7172 |
container_title | Journal of geophysical research. Space physics |
container_volume | 122 |
creator | He, Fei Zhang, Xiao‐Xin Lin, Rui‐Lin Fok, Mei‐Ching Katus, Roxanne M. Liemohn, Mike W. Gallagher, Dennis L. Nakano, Shinya |
description | A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–2015 covering four solar cycles. This model is compiled by the Levenberg‐Marquardt method for nonlinear multiparameter fitting and parameterized by VSW, BZ, SYM‐H, and AE. Continuous and smooth magnetic local time dependence controlled mainly by the solar wind‐driven convection electric field ESW is also embedded in this model. Compared with previous empirical models based on our database, this new model improves the forecasting accuracy and capability for the global plasmapause. The diurnal, seasonal, and solar cycle variations of the plasmapause can be captured by the new model. The NSW‐GDP model can potentially be used to forecast the global plasmapause shape with upstream solar wind and interplanetary magnetic field parameters and corresponding predicted values of SYM‐H and AE and can also be used as input parameters for other inner magnetospheric coupling models, such as dynamic radiation belt and ring current models and even MHD models.
Key Points
A new solar wind‐driven global dynamic plasmapause model based on multisatellite observations is constructed
This model is parameterized by VSW, interplanetary magnetic field BZ, SYM‐H, and AE and has continuous and smooth MLT dependence
This model is potentially applicable to inner magnetospheric research studies and space weather forecasts |
doi_str_mv | 10.1002/2017JA023913 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1928082284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928082284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGp3_oCAW6fePCZN3A1Fq6Ui-FgPt5NUpmQeJn3QnT_B3-gvcUoVXHk293D4uAcOIecMhgyAX3Fgo2kGXBgmjkiPM2USI4Ef_3qh4ZQMYlxCJ91FLO2R54zWbktj4zHQbVnbr49PG8qNq-mbb-boqd3VWJUFbT3GCltcR0erxjp_TfmQPuwdxdrSDfrS4qps6jNyskAf3eDn9snr7c3L-C6ZPU7ux9ksKSRjJhFoTKqV0JzxotDCKmURFk6OnOZqzpQDYFIr1COJc6kKx1MA64R0yARY0ScXh79taN7XLq7yZbMOdVeZM8M1aM617KjLA1WEJsbgFnkbygrDLmeQ75fL_y7X4eKAb0vvdv-y-XTylKVCMSO-AVZ7bbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928082284</pqid></control><display><type>article</type><title>A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>He, Fei ; Zhang, Xiao‐Xin ; Lin, Rui‐Lin ; Fok, Mei‐Ching ; Katus, Roxanne M. ; Liemohn, Mike W. ; Gallagher, Dennis L. ; Nakano, Shinya</creator><creatorcontrib>He, Fei ; Zhang, Xiao‐Xin ; Lin, Rui‐Lin ; Fok, Mei‐Ching ; Katus, Roxanne M. ; Liemohn, Mike W. ; Gallagher, Dennis L. ; Nakano, Shinya</creatorcontrib><description>A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–2015 covering four solar cycles. This model is compiled by the Levenberg‐Marquardt method for nonlinear multiparameter fitting and parameterized by VSW, BZ, SYM‐H, and AE. Continuous and smooth magnetic local time dependence controlled mainly by the solar wind‐driven convection electric field ESW is also embedded in this model. Compared with previous empirical models based on our database, this new model improves the forecasting accuracy and capability for the global plasmapause. The diurnal, seasonal, and solar cycle variations of the plasmapause can be captured by the new model. The NSW‐GDP model can potentially be used to forecast the global plasmapause shape with upstream solar wind and interplanetary magnetic field parameters and corresponding predicted values of SYM‐H and AE and can also be used as input parameters for other inner magnetospheric coupling models, such as dynamic radiation belt and ring current models and even MHD models.
Key Points
A new solar wind‐driven global dynamic plasmapause model based on multisatellite observations is constructed
This model is parameterized by VSW, interplanetary magnetic field BZ, SYM‐H, and AE and has continuous and smooth MLT dependence
This model is potentially applicable to inner magnetospheric research studies and space weather forecasts</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA023913</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Charged particles ; Climatology ; Convection modes ; dynamic model ; Electric fields ; Empirical models ; geomagnetic activity ; Interplanetary magnetic field ; Magnetic fields ; Magnetohydrodynamics ; Magnetospheres ; Mathematical models ; Plasmapause ; plasmasphere ; Radiation ; Ring current models ; Ring currents ; Satellites ; Solar cycle ; Solar magnetic field ; Solar wind ; Space weather ; Time dependence ; Wind power generation</subject><ispartof>Journal of geophysical research. Space physics, 2017-07, Vol.122 (7), p.7172-7187</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3</citedby><cites>FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3</cites><orcidid>0000-0003-0542-2686 ; 0000-0002-7759-7402 ; 0000-0002-7039-2631 ; 0000-0001-9500-866X ; 0000-0003-3924-3571 ; 0000-0003-0772-4610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Zhang, Xiao‐Xin</creatorcontrib><creatorcontrib>Lin, Rui‐Lin</creatorcontrib><creatorcontrib>Fok, Mei‐Ching</creatorcontrib><creatorcontrib>Katus, Roxanne M.</creatorcontrib><creatorcontrib>Liemohn, Mike W.</creatorcontrib><creatorcontrib>Gallagher, Dennis L.</creatorcontrib><creatorcontrib>Nakano, Shinya</creatorcontrib><title>A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation</title><title>Journal of geophysical research. Space physics</title><description>A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–2015 covering four solar cycles. This model is compiled by the Levenberg‐Marquardt method for nonlinear multiparameter fitting and parameterized by VSW, BZ, SYM‐H, and AE. Continuous and smooth magnetic local time dependence controlled mainly by the solar wind‐driven convection electric field ESW is also embedded in this model. Compared with previous empirical models based on our database, this new model improves the forecasting accuracy and capability for the global plasmapause. The diurnal, seasonal, and solar cycle variations of the plasmapause can be captured by the new model. The NSW‐GDP model can potentially be used to forecast the global plasmapause shape with upstream solar wind and interplanetary magnetic field parameters and corresponding predicted values of SYM‐H and AE and can also be used as input parameters for other inner magnetospheric coupling models, such as dynamic radiation belt and ring current models and even MHD models.
Key Points
A new solar wind‐driven global dynamic plasmapause model based on multisatellite observations is constructed
This model is parameterized by VSW, interplanetary magnetic field BZ, SYM‐H, and AE and has continuous and smooth MLT dependence
This model is potentially applicable to inner magnetospheric research studies and space weather forecasts</description><subject>Charged particles</subject><subject>Climatology</subject><subject>Convection modes</subject><subject>dynamic model</subject><subject>Electric fields</subject><subject>Empirical models</subject><subject>geomagnetic activity</subject><subject>Interplanetary magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Magnetospheres</subject><subject>Mathematical models</subject><subject>Plasmapause</subject><subject>plasmasphere</subject><subject>Radiation</subject><subject>Ring current models</subject><subject>Ring currents</subject><subject>Satellites</subject><subject>Solar cycle</subject><subject>Solar magnetic field</subject><subject>Solar wind</subject><subject>Space weather</subject><subject>Time dependence</subject><subject>Wind power generation</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGp3_oCAW6fePCZN3A1Fq6Ui-FgPt5NUpmQeJn3QnT_B3-gvcUoVXHk293D4uAcOIecMhgyAX3Fgo2kGXBgmjkiPM2USI4Ef_3qh4ZQMYlxCJ91FLO2R54zWbktj4zHQbVnbr49PG8qNq-mbb-boqd3VWJUFbT3GCltcR0erxjp_TfmQPuwdxdrSDfrS4qps6jNyskAf3eDn9snr7c3L-C6ZPU7ux9ksKSRjJhFoTKqV0JzxotDCKmURFk6OnOZqzpQDYFIr1COJc6kKx1MA64R0yARY0ScXh79taN7XLq7yZbMOdVeZM8M1aM617KjLA1WEJsbgFnkbygrDLmeQ75fL_y7X4eKAb0vvdv-y-XTylKVCMSO-AVZ7bbo</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>He, Fei</creator><creator>Zhang, Xiao‐Xin</creator><creator>Lin, Rui‐Lin</creator><creator>Fok, Mei‐Ching</creator><creator>Katus, Roxanne M.</creator><creator>Liemohn, Mike W.</creator><creator>Gallagher, Dennis L.</creator><creator>Nakano, Shinya</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0542-2686</orcidid><orcidid>https://orcid.org/0000-0002-7759-7402</orcidid><orcidid>https://orcid.org/0000-0002-7039-2631</orcidid><orcidid>https://orcid.org/0000-0001-9500-866X</orcidid><orcidid>https://orcid.org/0000-0003-3924-3571</orcidid><orcidid>https://orcid.org/0000-0003-0772-4610</orcidid></search><sort><creationdate>201707</creationdate><title>A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation</title><author>He, Fei ; Zhang, Xiao‐Xin ; Lin, Rui‐Lin ; Fok, Mei‐Ching ; Katus, Roxanne M. ; Liemohn, Mike W. ; Gallagher, Dennis L. ; Nakano, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Charged particles</topic><topic>Climatology</topic><topic>Convection modes</topic><topic>dynamic model</topic><topic>Electric fields</topic><topic>Empirical models</topic><topic>geomagnetic activity</topic><topic>Interplanetary magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Magnetospheres</topic><topic>Mathematical models</topic><topic>Plasmapause</topic><topic>plasmasphere</topic><topic>Radiation</topic><topic>Ring current models</topic><topic>Ring currents</topic><topic>Satellites</topic><topic>Solar cycle</topic><topic>Solar magnetic field</topic><topic>Solar wind</topic><topic>Space weather</topic><topic>Time dependence</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Zhang, Xiao‐Xin</creatorcontrib><creatorcontrib>Lin, Rui‐Lin</creatorcontrib><creatorcontrib>Fok, Mei‐Ching</creatorcontrib><creatorcontrib>Katus, Roxanne M.</creatorcontrib><creatorcontrib>Liemohn, Mike W.</creatorcontrib><creatorcontrib>Gallagher, Dennis L.</creatorcontrib><creatorcontrib>Nakano, Shinya</creatorcontrib><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fei</au><au>Zhang, Xiao‐Xin</au><au>Lin, Rui‐Lin</au><au>Fok, Mei‐Ching</au><au>Katus, Roxanne M.</au><au>Liemohn, Mike W.</au><au>Gallagher, Dennis L.</au><au>Nakano, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-07</date><risdate>2017</risdate><volume>122</volume><issue>7</issue><spage>7172</spage><epage>7187</epage><pages>7172-7187</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–2015 covering four solar cycles. This model is compiled by the Levenberg‐Marquardt method for nonlinear multiparameter fitting and parameterized by VSW, BZ, SYM‐H, and AE. Continuous and smooth magnetic local time dependence controlled mainly by the solar wind‐driven convection electric field ESW is also embedded in this model. Compared with previous empirical models based on our database, this new model improves the forecasting accuracy and capability for the global plasmapause. The diurnal, seasonal, and solar cycle variations of the plasmapause can be captured by the new model. The NSW‐GDP model can potentially be used to forecast the global plasmapause shape with upstream solar wind and interplanetary magnetic field parameters and corresponding predicted values of SYM‐H and AE and can also be used as input parameters for other inner magnetospheric coupling models, such as dynamic radiation belt and ring current models and even MHD models.
Key Points
A new solar wind‐driven global dynamic plasmapause model based on multisatellite observations is constructed
This model is parameterized by VSW, interplanetary magnetic field BZ, SYM‐H, and AE and has continuous and smooth MLT dependence
This model is potentially applicable to inner magnetospheric research studies and space weather forecasts</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA023913</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0542-2686</orcidid><orcidid>https://orcid.org/0000-0002-7759-7402</orcidid><orcidid>https://orcid.org/0000-0002-7039-2631</orcidid><orcidid>https://orcid.org/0000-0001-9500-866X</orcidid><orcidid>https://orcid.org/0000-0003-3924-3571</orcidid><orcidid>https://orcid.org/0000-0003-0772-4610</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-9380 |
ispartof | Journal of geophysical research. Space physics, 2017-07, Vol.122 (7), p.7172-7187 |
issn | 2169-9380 2169-9402 |
language | eng |
recordid | cdi_proquest_journals_1928082284 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Charged particles Climatology Convection modes dynamic model Electric fields Empirical models geomagnetic activity Interplanetary magnetic field Magnetic fields Magnetohydrodynamics Magnetospheres Mathematical models Plasmapause plasmasphere Radiation Ring current models Ring currents Satellites Solar cycle Solar magnetic field Solar wind Space weather Time dependence Wind power generation |
title | A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20solar%20wind%E2%80%90driven%20global%20dynamic%20plasmapause%20model:%202.%20Model%20and%20validation&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=He,%20Fei&rft.date=2017-07&rft.volume=122&rft.issue=7&rft.spage=7172&rft.epage=7187&rft.pages=7172-7187&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA023913&rft_dat=%3Cproquest_cross%3E1928082284%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1928082284&rft_id=info:pmid/&rfr_iscdi=true |