Loading…

A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation

A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–201...

Full description

Saved in:
Bibliographic Details
Published in:Journal of geophysical research. Space physics 2017-07, Vol.122 (7), p.7172-7187
Main Authors: He, Fei, Zhang, Xiao‐Xin, Lin, Rui‐Lin, Fok, Mei‐Ching, Katus, Roxanne M., Liemohn, Mike W., Gallagher, Dennis L., Nakano, Shinya
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3
cites cdi_FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3
container_end_page 7187
container_issue 7
container_start_page 7172
container_title Journal of geophysical research. Space physics
container_volume 122
creator He, Fei
Zhang, Xiao‐Xin
Lin, Rui‐Lin
Fok, Mei‐Ching
Katus, Roxanne M.
Liemohn, Mike W.
Gallagher, Dennis L.
Nakano, Shinya
description A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–2015 covering four solar cycles. This model is compiled by the Levenberg‐Marquardt method for nonlinear multiparameter fitting and parameterized by VSW, BZ, SYM‐H, and AE. Continuous and smooth magnetic local time dependence controlled mainly by the solar wind‐driven convection electric field ESW is also embedded in this model. Compared with previous empirical models based on our database, this new model improves the forecasting accuracy and capability for the global plasmapause. The diurnal, seasonal, and solar cycle variations of the plasmapause can be captured by the new model. The NSW‐GDP model can potentially be used to forecast the global plasmapause shape with upstream solar wind and interplanetary magnetic field parameters and corresponding predicted values of SYM‐H and AE and can also be used as input parameters for other inner magnetospheric coupling models, such as dynamic radiation belt and ring current models and even MHD models. Key Points A new solar wind‐driven global dynamic plasmapause model based on multisatellite observations is constructed This model is parameterized by VSW, interplanetary magnetic field BZ, SYM‐H, and AE and has continuous and smooth MLT dependence This model is potentially applicable to inner magnetospheric research studies and space weather forecasts
doi_str_mv 10.1002/2017JA023913
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1928082284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928082284</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWGp3_oCAW6fePCZN3A1Fq6Ui-FgPt5NUpmQeJn3QnT_B3-gvcUoVXHk293D4uAcOIecMhgyAX3Fgo2kGXBgmjkiPM2USI4Ef_3qh4ZQMYlxCJ91FLO2R54zWbktj4zHQbVnbr49PG8qNq-mbb-boqd3VWJUFbT3GCltcR0erxjp_TfmQPuwdxdrSDfrS4qps6jNyskAf3eDn9snr7c3L-C6ZPU7ux9ksKSRjJhFoTKqV0JzxotDCKmURFk6OnOZqzpQDYFIr1COJc6kKx1MA64R0yARY0ScXh79taN7XLq7yZbMOdVeZM8M1aM617KjLA1WEJsbgFnkbygrDLmeQ75fL_y7X4eKAb0vvdv-y-XTylKVCMSO-AVZ7bbo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928082284</pqid></control><display><type>article</type><title>A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>He, Fei ; Zhang, Xiao‐Xin ; Lin, Rui‐Lin ; Fok, Mei‐Ching ; Katus, Roxanne M. ; Liemohn, Mike W. ; Gallagher, Dennis L. ; Nakano, Shinya</creator><creatorcontrib>He, Fei ; Zhang, Xiao‐Xin ; Lin, Rui‐Lin ; Fok, Mei‐Ching ; Katus, Roxanne M. ; Liemohn, Mike W. ; Gallagher, Dennis L. ; Nakano, Shinya</creatorcontrib><description>A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–2015 covering four solar cycles. This model is compiled by the Levenberg‐Marquardt method for nonlinear multiparameter fitting and parameterized by VSW, BZ, SYM‐H, and AE. Continuous and smooth magnetic local time dependence controlled mainly by the solar wind‐driven convection electric field ESW is also embedded in this model. Compared with previous empirical models based on our database, this new model improves the forecasting accuracy and capability for the global plasmapause. The diurnal, seasonal, and solar cycle variations of the plasmapause can be captured by the new model. The NSW‐GDP model can potentially be used to forecast the global plasmapause shape with upstream solar wind and interplanetary magnetic field parameters and corresponding predicted values of SYM‐H and AE and can also be used as input parameters for other inner magnetospheric coupling models, such as dynamic radiation belt and ring current models and even MHD models. Key Points A new solar wind‐driven global dynamic plasmapause model based on multisatellite observations is constructed This model is parameterized by VSW, interplanetary magnetic field BZ, SYM‐H, and AE and has continuous and smooth MLT dependence This model is potentially applicable to inner magnetospheric research studies and space weather forecasts</description><identifier>ISSN: 2169-9380</identifier><identifier>EISSN: 2169-9402</identifier><identifier>DOI: 10.1002/2017JA023913</identifier><language>eng</language><publisher>Washington: Blackwell Publishing Ltd</publisher><subject>Charged particles ; Climatology ; Convection modes ; dynamic model ; Electric fields ; Empirical models ; geomagnetic activity ; Interplanetary magnetic field ; Magnetic fields ; Magnetohydrodynamics ; Magnetospheres ; Mathematical models ; Plasmapause ; plasmasphere ; Radiation ; Ring current models ; Ring currents ; Satellites ; Solar cycle ; Solar magnetic field ; Solar wind ; Space weather ; Time dependence ; Wind power generation</subject><ispartof>Journal of geophysical research. Space physics, 2017-07, Vol.122 (7), p.7172-7187</ispartof><rights>2017. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3</citedby><cites>FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3</cites><orcidid>0000-0003-0542-2686 ; 0000-0002-7759-7402 ; 0000-0002-7039-2631 ; 0000-0001-9500-866X ; 0000-0003-3924-3571 ; 0000-0003-0772-4610</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Zhang, Xiao‐Xin</creatorcontrib><creatorcontrib>Lin, Rui‐Lin</creatorcontrib><creatorcontrib>Fok, Mei‐Ching</creatorcontrib><creatorcontrib>Katus, Roxanne M.</creatorcontrib><creatorcontrib>Liemohn, Mike W.</creatorcontrib><creatorcontrib>Gallagher, Dennis L.</creatorcontrib><creatorcontrib>Nakano, Shinya</creatorcontrib><title>A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation</title><title>Journal of geophysical research. Space physics</title><description>A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–2015 covering four solar cycles. This model is compiled by the Levenberg‐Marquardt method for nonlinear multiparameter fitting and parameterized by VSW, BZ, SYM‐H, and AE. Continuous and smooth magnetic local time dependence controlled mainly by the solar wind‐driven convection electric field ESW is also embedded in this model. Compared with previous empirical models based on our database, this new model improves the forecasting accuracy and capability for the global plasmapause. The diurnal, seasonal, and solar cycle variations of the plasmapause can be captured by the new model. The NSW‐GDP model can potentially be used to forecast the global plasmapause shape with upstream solar wind and interplanetary magnetic field parameters and corresponding predicted values of SYM‐H and AE and can also be used as input parameters for other inner magnetospheric coupling models, such as dynamic radiation belt and ring current models and even MHD models. Key Points A new solar wind‐driven global dynamic plasmapause model based on multisatellite observations is constructed This model is parameterized by VSW, interplanetary magnetic field BZ, SYM‐H, and AE and has continuous and smooth MLT dependence This model is potentially applicable to inner magnetospheric research studies and space weather forecasts</description><subject>Charged particles</subject><subject>Climatology</subject><subject>Convection modes</subject><subject>dynamic model</subject><subject>Electric fields</subject><subject>Empirical models</subject><subject>geomagnetic activity</subject><subject>Interplanetary magnetic field</subject><subject>Magnetic fields</subject><subject>Magnetohydrodynamics</subject><subject>Magnetospheres</subject><subject>Mathematical models</subject><subject>Plasmapause</subject><subject>plasmasphere</subject><subject>Radiation</subject><subject>Ring current models</subject><subject>Ring currents</subject><subject>Satellites</subject><subject>Solar cycle</subject><subject>Solar magnetic field</subject><subject>Solar wind</subject><subject>Space weather</subject><subject>Time dependence</subject><subject>Wind power generation</subject><issn>2169-9380</issn><issn>2169-9402</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWGp3_oCAW6fePCZN3A1Fq6Ui-FgPt5NUpmQeJn3QnT_B3-gvcUoVXHk293D4uAcOIecMhgyAX3Fgo2kGXBgmjkiPM2USI4Ef_3qh4ZQMYlxCJ91FLO2R54zWbktj4zHQbVnbr49PG8qNq-mbb-boqd3VWJUFbT3GCltcR0erxjp_TfmQPuwdxdrSDfrS4qps6jNyskAf3eDn9snr7c3L-C6ZPU7ux9ksKSRjJhFoTKqV0JzxotDCKmURFk6OnOZqzpQDYFIr1COJc6kKx1MA64R0yARY0ScXh79taN7XLq7yZbMOdVeZM8M1aM617KjLA1WEJsbgFnkbygrDLmeQ75fL_y7X4eKAb0vvdv-y-XTylKVCMSO-AVZ7bbo</recordid><startdate>201707</startdate><enddate>201707</enddate><creator>He, Fei</creator><creator>Zhang, Xiao‐Xin</creator><creator>Lin, Rui‐Lin</creator><creator>Fok, Mei‐Ching</creator><creator>Katus, Roxanne M.</creator><creator>Liemohn, Mike W.</creator><creator>Gallagher, Dennis L.</creator><creator>Nakano, Shinya</creator><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-0542-2686</orcidid><orcidid>https://orcid.org/0000-0002-7759-7402</orcidid><orcidid>https://orcid.org/0000-0002-7039-2631</orcidid><orcidid>https://orcid.org/0000-0001-9500-866X</orcidid><orcidid>https://orcid.org/0000-0003-3924-3571</orcidid><orcidid>https://orcid.org/0000-0003-0772-4610</orcidid></search><sort><creationdate>201707</creationdate><title>A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation</title><author>He, Fei ; Zhang, Xiao‐Xin ; Lin, Rui‐Lin ; Fok, Mei‐Ching ; Katus, Roxanne M. ; Liemohn, Mike W. ; Gallagher, Dennis L. ; Nakano, Shinya</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Charged particles</topic><topic>Climatology</topic><topic>Convection modes</topic><topic>dynamic model</topic><topic>Electric fields</topic><topic>Empirical models</topic><topic>geomagnetic activity</topic><topic>Interplanetary magnetic field</topic><topic>Magnetic fields</topic><topic>Magnetohydrodynamics</topic><topic>Magnetospheres</topic><topic>Mathematical models</topic><topic>Plasmapause</topic><topic>plasmasphere</topic><topic>Radiation</topic><topic>Ring current models</topic><topic>Ring currents</topic><topic>Satellites</topic><topic>Solar cycle</topic><topic>Solar magnetic field</topic><topic>Solar wind</topic><topic>Space weather</topic><topic>Time dependence</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Fei</creatorcontrib><creatorcontrib>Zhang, Xiao‐Xin</creatorcontrib><creatorcontrib>Lin, Rui‐Lin</creatorcontrib><creatorcontrib>Fok, Mei‐Ching</creatorcontrib><creatorcontrib>Katus, Roxanne M.</creatorcontrib><creatorcontrib>Liemohn, Mike W.</creatorcontrib><creatorcontrib>Gallagher, Dennis L.</creatorcontrib><creatorcontrib>Nakano, Shinya</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of geophysical research. Space physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Fei</au><au>Zhang, Xiao‐Xin</au><au>Lin, Rui‐Lin</au><au>Fok, Mei‐Ching</au><au>Katus, Roxanne M.</au><au>Liemohn, Mike W.</au><au>Gallagher, Dennis L.</au><au>Nakano, Shinya</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation</atitle><jtitle>Journal of geophysical research. Space physics</jtitle><date>2017-07</date><risdate>2017</risdate><volume>122</volume><issue>7</issue><spage>7172</spage><epage>7187</epage><pages>7172-7187</pages><issn>2169-9380</issn><eissn>2169-9402</eissn><abstract>A new solar wind‐driven global dynamic plasmapause (NSW‐GDP) model has been constructed based on the largest currently available database containing 49,119 plasmapause crossing locations and 3957 plasmapause profiles (corresponding to 48,899 plasmapause locations), from 18 satellites during 1977–2015 covering four solar cycles. This model is compiled by the Levenberg‐Marquardt method for nonlinear multiparameter fitting and parameterized by VSW, BZ, SYM‐H, and AE. Continuous and smooth magnetic local time dependence controlled mainly by the solar wind‐driven convection electric field ESW is also embedded in this model. Compared with previous empirical models based on our database, this new model improves the forecasting accuracy and capability for the global plasmapause. The diurnal, seasonal, and solar cycle variations of the plasmapause can be captured by the new model. The NSW‐GDP model can potentially be used to forecast the global plasmapause shape with upstream solar wind and interplanetary magnetic field parameters and corresponding predicted values of SYM‐H and AE and can also be used as input parameters for other inner magnetospheric coupling models, such as dynamic radiation belt and ring current models and even MHD models. Key Points A new solar wind‐driven global dynamic plasmapause model based on multisatellite observations is constructed This model is parameterized by VSW, interplanetary magnetic field BZ, SYM‐H, and AE and has continuous and smooth MLT dependence This model is potentially applicable to inner magnetospheric research studies and space weather forecasts</abstract><cop>Washington</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/2017JA023913</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-0542-2686</orcidid><orcidid>https://orcid.org/0000-0002-7759-7402</orcidid><orcidid>https://orcid.org/0000-0002-7039-2631</orcidid><orcidid>https://orcid.org/0000-0001-9500-866X</orcidid><orcidid>https://orcid.org/0000-0003-3924-3571</orcidid><orcidid>https://orcid.org/0000-0003-0772-4610</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-9380
ispartof Journal of geophysical research. Space physics, 2017-07, Vol.122 (7), p.7172-7187
issn 2169-9380
2169-9402
language eng
recordid cdi_proquest_journals_1928082284
source Wiley-Blackwell Read & Publish Collection
subjects Charged particles
Climatology
Convection modes
dynamic model
Electric fields
Empirical models
geomagnetic activity
Interplanetary magnetic field
Magnetic fields
Magnetohydrodynamics
Magnetospheres
Mathematical models
Plasmapause
plasmasphere
Radiation
Ring current models
Ring currents
Satellites
Solar cycle
Solar magnetic field
Solar wind
Space weather
Time dependence
Wind power generation
title A new solar wind‐driven global dynamic plasmapause model: 2. Model and validation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20solar%20wind%E2%80%90driven%20global%20dynamic%20plasmapause%20model:%202.%20Model%20and%20validation&rft.jtitle=Journal%20of%20geophysical%20research.%20Space%20physics&rft.au=He,%20Fei&rft.date=2017-07&rft.volume=122&rft.issue=7&rft.spage=7172&rft.epage=7187&rft.pages=7172-7187&rft.issn=2169-9380&rft.eissn=2169-9402&rft_id=info:doi/10.1002/2017JA023913&rft_dat=%3Cproquest_cross%3E1928082284%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4119-3a9958638212cc83d66da0fe47e826b16e001486a874ab46ce2500de34ea130d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1928082284&rft_id=info:pmid/&rfr_iscdi=true