Loading…

Self-gravitating fluid systems and galactic dark matter

We study gravitational collapse with anisotropic pressures, whose end stage can mimic space–times that are seeded by galactic dark matter. To this end, we identify a class of space–times (with conical defects) that can arise out of such a collapse process, and admit stable circular orbits at all rad...

Full description

Saved in:
Bibliographic Details
Published in:General relativity and gravitation 2017-09, Vol.49 (9), p.1-21, Article 116
Main Authors: Banik, Uddipan, Dey, Dipanjan, Bhattacharya, Kaushik, Sarkar, Tapobrata
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-71b0d3aee2aea7d5067bea5da3b8f0fa929def7093bb7f34fbb89daa6fa2a33c3
cites cdi_FETCH-LOGICAL-c316t-71b0d3aee2aea7d5067bea5da3b8f0fa929def7093bb7f34fbb89daa6fa2a33c3
container_end_page 21
container_issue 9
container_start_page 1
container_title General relativity and gravitation
container_volume 49
creator Banik, Uddipan
Dey, Dipanjan
Bhattacharya, Kaushik
Sarkar, Tapobrata
description We study gravitational collapse with anisotropic pressures, whose end stage can mimic space–times that are seeded by galactic dark matter. To this end, we identify a class of space–times (with conical defects) that can arise out of such a collapse process, and admit stable circular orbits at all radial distances. These have a naked singularity at the origin. An example of such a space–time is seen to be the Bertrand space–time discovered by Perlick, that admits closed, stable orbits at all radii. Using relativistic two-fluid models, we show that our galactic space–times might indicate exotic matter, i.e one of the component fluids may have negative pressure for a certain asymptotic fall off of the associated mass density, in the Newtonian limit. We complement this analysis by studying some simple examples of Newtonian two-fluid systems, and compare this with the Newtonian limit of the relativistic systems considered.
doi_str_mv 10.1007/s10714-017-2284-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1928172511</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1928172511</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-71b0d3aee2aea7d5067bea5da3b8f0fa929def7093bb7f34fbb89daa6fa2a33c3</originalsourceid><addsrcrecordid>eNp1kE1LxDAURYMoOI7-AHcF19G8pO1rljL4BQMu1HV4bZLSsdMZk4zM_Hs71IUbV48L99wHh7FrELcgBN5FEAg5F4Bcyirn-xM2gwIl14WSp2wmhACOKOCcXcS4GqPGEmcM31zveRvou0uUuqHNfL_rbBYPMbl1zGiwWUs9NalrMkvhM1tTSi5csjNPfXRXv3fOPh4f3hfPfPn69LK4X_JGQZk4Qi2sIuckOUJbiBJrR4UlVVdeeNJSW-dRaFXX6FXu67rSlqj0JEmpRs3ZzbS7DZuvnYvJrDa7MIwvDWhZAcoCYGzB1GrCJsbgvNmGbk3hYECYox8z-TGjH3P0Y_YjIycmjt2hdeHP8r_QD_WcaaY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1928172511</pqid></control><display><type>article</type><title>Self-gravitating fluid systems and galactic dark matter</title><source>Springer Link</source><creator>Banik, Uddipan ; Dey, Dipanjan ; Bhattacharya, Kaushik ; Sarkar, Tapobrata</creator><creatorcontrib>Banik, Uddipan ; Dey, Dipanjan ; Bhattacharya, Kaushik ; Sarkar, Tapobrata</creatorcontrib><description>We study gravitational collapse with anisotropic pressures, whose end stage can mimic space–times that are seeded by galactic dark matter. To this end, we identify a class of space–times (with conical defects) that can arise out of such a collapse process, and admit stable circular orbits at all radial distances. These have a naked singularity at the origin. An example of such a space–time is seen to be the Bertrand space–time discovered by Perlick, that admits closed, stable orbits at all radii. Using relativistic two-fluid models, we show that our galactic space–times might indicate exotic matter, i.e one of the component fluids may have negative pressure for a certain asymptotic fall off of the associated mass density, in the Newtonian limit. We complement this analysis by studying some simple examples of Newtonian two-fluid systems, and compare this with the Newtonian limit of the relativistic systems considered.</description><identifier>ISSN: 0001-7701</identifier><identifier>EISSN: 1572-9532</identifier><identifier>DOI: 10.1007/s10714-017-2284-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Astronomical models ; Astronomy ; Astrophysics and Cosmology ; Circular orbits ; Classical and Quantum Gravitation ; Collapse ; Computational fluid dynamics ; Dark matter ; Defects ; Differential Geometry ; Fluids ; Gravitation ; Gravitational collapse ; Gravity ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Quantum Physics ; Relativism ; Relativity Theory ; Research Article ; Theoretical</subject><ispartof>General relativity and gravitation, 2017-09, Vol.49 (9), p.1-21, Article 116</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-71b0d3aee2aea7d5067bea5da3b8f0fa929def7093bb7f34fbb89daa6fa2a33c3</citedby><cites>FETCH-LOGICAL-c316t-71b0d3aee2aea7d5067bea5da3b8f0fa929def7093bb7f34fbb89daa6fa2a33c3</cites><orcidid>0000-0001-8328-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Banik, Uddipan</creatorcontrib><creatorcontrib>Dey, Dipanjan</creatorcontrib><creatorcontrib>Bhattacharya, Kaushik</creatorcontrib><creatorcontrib>Sarkar, Tapobrata</creatorcontrib><title>Self-gravitating fluid systems and galactic dark matter</title><title>General relativity and gravitation</title><addtitle>Gen Relativ Gravit</addtitle><description>We study gravitational collapse with anisotropic pressures, whose end stage can mimic space–times that are seeded by galactic dark matter. To this end, we identify a class of space–times (with conical defects) that can arise out of such a collapse process, and admit stable circular orbits at all radial distances. These have a naked singularity at the origin. An example of such a space–time is seen to be the Bertrand space–time discovered by Perlick, that admits closed, stable orbits at all radii. Using relativistic two-fluid models, we show that our galactic space–times might indicate exotic matter, i.e one of the component fluids may have negative pressure for a certain asymptotic fall off of the associated mass density, in the Newtonian limit. We complement this analysis by studying some simple examples of Newtonian two-fluid systems, and compare this with the Newtonian limit of the relativistic systems considered.</description><subject>Astronomical models</subject><subject>Astronomy</subject><subject>Astrophysics and Cosmology</subject><subject>Circular orbits</subject><subject>Classical and Quantum Gravitation</subject><subject>Collapse</subject><subject>Computational fluid dynamics</subject><subject>Dark matter</subject><subject>Defects</subject><subject>Differential Geometry</subject><subject>Fluids</subject><subject>Gravitation</subject><subject>Gravitational collapse</subject><subject>Gravity</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Quantum Physics</subject><subject>Relativism</subject><subject>Relativity Theory</subject><subject>Research Article</subject><subject>Theoretical</subject><issn>0001-7701</issn><issn>1572-9532</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAURYMoOI7-AHcF19G8pO1rljL4BQMu1HV4bZLSsdMZk4zM_Hs71IUbV48L99wHh7FrELcgBN5FEAg5F4Bcyirn-xM2gwIl14WSp2wmhACOKOCcXcS4GqPGEmcM31zveRvou0uUuqHNfL_rbBYPMbl1zGiwWUs9NalrMkvhM1tTSi5csjNPfXRXv3fOPh4f3hfPfPn69LK4X_JGQZk4Qi2sIuckOUJbiBJrR4UlVVdeeNJSW-dRaFXX6FXu67rSlqj0JEmpRs3ZzbS7DZuvnYvJrDa7MIwvDWhZAcoCYGzB1GrCJsbgvNmGbk3hYECYox8z-TGjH3P0Y_YjIycmjt2hdeHP8r_QD_WcaaY</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Banik, Uddipan</creator><creator>Dey, Dipanjan</creator><creator>Bhattacharya, Kaushik</creator><creator>Sarkar, Tapobrata</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-8328-4472</orcidid></search><sort><creationdate>20170901</creationdate><title>Self-gravitating fluid systems and galactic dark matter</title><author>Banik, Uddipan ; Dey, Dipanjan ; Bhattacharya, Kaushik ; Sarkar, Tapobrata</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-71b0d3aee2aea7d5067bea5da3b8f0fa929def7093bb7f34fbb89daa6fa2a33c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Astronomical models</topic><topic>Astronomy</topic><topic>Astrophysics and Cosmology</topic><topic>Circular orbits</topic><topic>Classical and Quantum Gravitation</topic><topic>Collapse</topic><topic>Computational fluid dynamics</topic><topic>Dark matter</topic><topic>Defects</topic><topic>Differential Geometry</topic><topic>Fluids</topic><topic>Gravitation</topic><topic>Gravitational collapse</topic><topic>Gravity</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Quantum Physics</topic><topic>Relativism</topic><topic>Relativity Theory</topic><topic>Research Article</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banik, Uddipan</creatorcontrib><creatorcontrib>Dey, Dipanjan</creatorcontrib><creatorcontrib>Bhattacharya, Kaushik</creatorcontrib><creatorcontrib>Sarkar, Tapobrata</creatorcontrib><collection>CrossRef</collection><jtitle>General relativity and gravitation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banik, Uddipan</au><au>Dey, Dipanjan</au><au>Bhattacharya, Kaushik</au><au>Sarkar, Tapobrata</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Self-gravitating fluid systems and galactic dark matter</atitle><jtitle>General relativity and gravitation</jtitle><stitle>Gen Relativ Gravit</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>49</volume><issue>9</issue><spage>1</spage><epage>21</epage><pages>1-21</pages><artnum>116</artnum><issn>0001-7701</issn><eissn>1572-9532</eissn><abstract>We study gravitational collapse with anisotropic pressures, whose end stage can mimic space–times that are seeded by galactic dark matter. To this end, we identify a class of space–times (with conical defects) that can arise out of such a collapse process, and admit stable circular orbits at all radial distances. These have a naked singularity at the origin. An example of such a space–time is seen to be the Bertrand space–time discovered by Perlick, that admits closed, stable orbits at all radii. Using relativistic two-fluid models, we show that our galactic space–times might indicate exotic matter, i.e one of the component fluids may have negative pressure for a certain asymptotic fall off of the associated mass density, in the Newtonian limit. We complement this analysis by studying some simple examples of Newtonian two-fluid systems, and compare this with the Newtonian limit of the relativistic systems considered.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10714-017-2284-x</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8328-4472</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-7701
ispartof General relativity and gravitation, 2017-09, Vol.49 (9), p.1-21, Article 116
issn 0001-7701
1572-9532
language eng
recordid cdi_proquest_journals_1928172511
source Springer Link
subjects Astronomical models
Astronomy
Astrophysics and Cosmology
Circular orbits
Classical and Quantum Gravitation
Collapse
Computational fluid dynamics
Dark matter
Defects
Differential Geometry
Fluids
Gravitation
Gravitational collapse
Gravity
Mathematical and Computational Physics
Physics
Physics and Astronomy
Quantum Physics
Relativism
Relativity Theory
Research Article
Theoretical
title Self-gravitating fluid systems and galactic dark matter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T07%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Self-gravitating%20fluid%20systems%20and%20galactic%20dark%20matter&rft.jtitle=General%20relativity%20and%20gravitation&rft.au=Banik,%20Uddipan&rft.date=2017-09-01&rft.volume=49&rft.issue=9&rft.spage=1&rft.epage=21&rft.pages=1-21&rft.artnum=116&rft.issn=0001-7701&rft.eissn=1572-9532&rft_id=info:doi/10.1007/s10714-017-2284-x&rft_dat=%3Cproquest_cross%3E1928172511%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-71b0d3aee2aea7d5067bea5da3b8f0fa929def7093bb7f34fbb89daa6fa2a33c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1928172511&rft_id=info:pmid/&rfr_iscdi=true