Loading…

Characterization of Sorghum Bran/Recycled Low Density Polyethylene for the Manufacturing of Polymer Composites

The objective of the study was to investigate the suitability of using sorghum bran in recycled low density polyethylene (R-LDPE) composites manufacturing. In response to the disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low density polyethylen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of polymers and the environment 2017-09, Vol.25 (3), p.533-543
Main Author: Ogah, Anselm Ogah
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The objective of the study was to investigate the suitability of using sorghum bran in recycled low density polyethylene (R-LDPE) composites manufacturing. In response to the disposal of environmental problematic agricultural and polymer waste, composite sheets using recycled low density polyethylene and sorghum bran of different loadings (5, 10, 15 and 20 wt%) were prepared by melt compounding and compression molding. The effects of sorghum bran loadings on the mechanical, thermal, water absorption, swelling and crystalline properties of the composites were determined. Characterization of composites was carried out using X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermo gravimetric (TGA/DTG) and mechanical analyses. It was found that increasing fiber loadings resulted to increased moduli and tensile strength while hardness was decreased. XRD indicated that fiber addition to R-LDPE did not change characteristic peak position. DSC results showed that the R-LDPE had significantly larger peak heat flow during cooling run than the blank R-LDPE, showing higher crystallization rates for R-LDPE. The results obtained confirmed that sorghum bran particles showed some potential as a good reinforcement in polymer matrix composites and indicate its thermal stability for possibly future composite applications.
ISSN:1566-2543
1572-8919
1572-8900
DOI:10.1007/s10924-016-0830-3