Loading…

Handover Rate Analysis for K-Tier Heterogeneous Cellular Networks With General Path-Loss Exponents

Network densification will produce frequent handover for mobile users, which could largely diminish the densification gain. We develop a comprehensive analytical model for the handover rate in K-tier heterogeneous cellular networks, where each tier is modeled as an independent Poisson point process...

Full description

Saved in:
Bibliographic Details
Published in:IEEE communications letters 2017-08, Vol.21 (8), p.1863-1866
Main Authors: Ren, Yuwei, Li, Yingzhe, Qi, Can
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Network densification will produce frequent handover for mobile users, which could largely diminish the densification gain. We develop a comprehensive analytical model for the handover rate in K-tier heterogeneous cellular networks, where each tier is modeled as an independent Poisson point process with unique transmit power, path-loss exponent, spatial density, and association bias. The spatial randomness of users' mobility is captured and analyzed by stochastic geometric theory, and we derive closed-form expressions for handover rate with arbitrary mobile trajectories. The relationship between total handover rate and horizontal/vertical handover rate is analyzed, and the effect of the user's velocity, BS densities, path-loss exponents, and association bias are found. There is an optimum value of BS densities to keep a good tradeoff between handover rate and user's throughput. Finally, simulation results verify the accuracy of the derivation.
ISSN:1089-7798
1558-2558
DOI:10.1109/LCOMM.2017.2702180