Loading…

Characteristics of all-optical 3R regenerators using cascaded second-order nonlinear effect in quasi-phase matched lithium niobate devices

We numerically show that quasi-phase matched (QPM) lithium niobate (LN) devices employing the cascaded second-order nonlinear effect of second harmonic generation (SHG) and difference frequency mixing (DFM) have all-optical decision gate characteristics. The decision gate function is realized by a p...

Full description

Saved in:
Bibliographic Details
Published in:Optical and quantum electronics 2017-09, Vol.49 (9), p.1-16, Article 297
Main Authors: Fukuchi, Yutaka, Kimura, Tomotaka, Hirata, Kouji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-9a6f5bddd5875a57af02518fcf8caebb1a3681781f589eef4d9a7e079bf987983
cites cdi_FETCH-LOGICAL-c316t-9a6f5bddd5875a57af02518fcf8caebb1a3681781f589eef4d9a7e079bf987983
container_end_page 16
container_issue 9
container_start_page 1
container_title Optical and quantum electronics
container_volume 49
creator Fukuchi, Yutaka
Kimura, Tomotaka
Hirata, Kouji
description We numerically show that quasi-phase matched (QPM) lithium niobate (LN) devices employing the cascaded second-order nonlinear effect of second harmonic generation (SHG) and difference frequency mixing (DFM) have all-optical decision gate characteristics. The decision gate function is realized by a parabolic transmittance for a low-power region and a limiting characteristic for a high-power region. The limiter function is attributed to the large group-velocity mismatch between the fundamental and second harmonic pulses. This operation principle differs from those of other all-optical 2R (reamplification and reshaping) or 3R (2R and retiming) regenerators that have been proposed in the past. Furthermore, we show that an initial time offset between the signal and clock pulses can improve the output signal power or the switching efficiency of the device. Based on the numerical results, we propose a method for designing all-optical 3R regenerators using the cascade of SHG and DFM in the QPM-LN devices. Following the design method, all-optical 3R operation at the bit rate of 200 Gbps can be achieved using a 1-cm-long waveguide device.
doi_str_mv 10.1007/s11082-017-1141-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1929476427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929476427</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-9a6f5bddd5875a57af02518fcf8caebb1a3681781f589eef4d9a7e079bf987983</originalsourceid><addsrcrecordid>eNp1kM2KVDEQRoMoTDv6ALMLuM6Yun9JltLojDAgiIK7UDepdGe4nfQkuYKv4FN7h3bhxlVR8J2vqMPYDchbkFK9rwBSd0KCEgADCHjBdjCqTmhQP16ynezlJLQBc8Ve1_oopZyGUe7Y7_0RC7pGJdYWXeU5cFwWkc_bhgvvv_JCB0pUsOVS-VpjOnCH1aEnzyu5nLzIxVPhKaclJsLCKQRyjcfEn1asUZyPWImfsLnjBi2xHeN64inmGRtxTz-jo_qGvQq4VHr7d16z758-ftvfi4cvd5_3Hx6E62FqwuAUxtl7P2o14qgwyG4EHVzQDmmeAftpe1pDGLUhCoM3qEgqMwejldH9NXt36T2X_LRSbfYxryVtJy2YzgxqGjq1peCSciXXWijYc4knLL8sSPus3F6U2025fVZuYWO6C1O3bDpQ-af5v9AfBiKHIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929476427</pqid></control><display><type>article</type><title>Characteristics of all-optical 3R regenerators using cascaded second-order nonlinear effect in quasi-phase matched lithium niobate devices</title><source>Springer Link</source><creator>Fukuchi, Yutaka ; Kimura, Tomotaka ; Hirata, Kouji</creator><creatorcontrib>Fukuchi, Yutaka ; Kimura, Tomotaka ; Hirata, Kouji</creatorcontrib><description>We numerically show that quasi-phase matched (QPM) lithium niobate (LN) devices employing the cascaded second-order nonlinear effect of second harmonic generation (SHG) and difference frequency mixing (DFM) have all-optical decision gate characteristics. The decision gate function is realized by a parabolic transmittance for a low-power region and a limiting characteristic for a high-power region. The limiter function is attributed to the large group-velocity mismatch between the fundamental and second harmonic pulses. This operation principle differs from those of other all-optical 2R (reamplification and reshaping) or 3R (2R and retiming) regenerators that have been proposed in the past. Furthermore, we show that an initial time offset between the signal and clock pulses can improve the output signal power or the switching efficiency of the device. Based on the numerical results, we propose a method for designing all-optical 3R regenerators using the cascade of SHG and DFM in the QPM-LN devices. Following the design method, all-optical 3R operation at the bit rate of 200 Gbps can be achieved using a 1-cm-long waveguide device.</description><identifier>ISSN: 0306-8919</identifier><identifier>EISSN: 1572-817X</identifier><identifier>DOI: 10.1007/s11082-017-1141-1</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Computer Communication Networks ; Devices ; Difference frequency mixing ; Electrical Engineering ; Lasers ; Lithium ; Optical Devices ; Optics ; Phase matching ; Photonics ; Physics ; Physics and Astronomy ; Power efficiency ; Regenerators ; Second harmonic generation ; Switching</subject><ispartof>Optical and quantum electronics, 2017-09, Vol.49 (9), p.1-16, Article 297</ispartof><rights>Springer Science+Business Media, LLC 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-9a6f5bddd5875a57af02518fcf8caebb1a3681781f589eef4d9a7e079bf987983</citedby><cites>FETCH-LOGICAL-c316t-9a6f5bddd5875a57af02518fcf8caebb1a3681781f589eef4d9a7e079bf987983</cites><orcidid>0000-0002-2416-9578</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Fukuchi, Yutaka</creatorcontrib><creatorcontrib>Kimura, Tomotaka</creatorcontrib><creatorcontrib>Hirata, Kouji</creatorcontrib><title>Characteristics of all-optical 3R regenerators using cascaded second-order nonlinear effect in quasi-phase matched lithium niobate devices</title><title>Optical and quantum electronics</title><addtitle>Opt Quant Electron</addtitle><description>We numerically show that quasi-phase matched (QPM) lithium niobate (LN) devices employing the cascaded second-order nonlinear effect of second harmonic generation (SHG) and difference frequency mixing (DFM) have all-optical decision gate characteristics. The decision gate function is realized by a parabolic transmittance for a low-power region and a limiting characteristic for a high-power region. The limiter function is attributed to the large group-velocity mismatch between the fundamental and second harmonic pulses. This operation principle differs from those of other all-optical 2R (reamplification and reshaping) or 3R (2R and retiming) regenerators that have been proposed in the past. Furthermore, we show that an initial time offset between the signal and clock pulses can improve the output signal power or the switching efficiency of the device. Based on the numerical results, we propose a method for designing all-optical 3R regenerators using the cascade of SHG and DFM in the QPM-LN devices. Following the design method, all-optical 3R operation at the bit rate of 200 Gbps can be achieved using a 1-cm-long waveguide device.</description><subject>Characterization and Evaluation of Materials</subject><subject>Computer Communication Networks</subject><subject>Devices</subject><subject>Difference frequency mixing</subject><subject>Electrical Engineering</subject><subject>Lasers</subject><subject>Lithium</subject><subject>Optical Devices</subject><subject>Optics</subject><subject>Phase matching</subject><subject>Photonics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Power efficiency</subject><subject>Regenerators</subject><subject>Second harmonic generation</subject><subject>Switching</subject><issn>0306-8919</issn><issn>1572-817X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kM2KVDEQRoMoTDv6ALMLuM6Yun9JltLojDAgiIK7UDepdGe4nfQkuYKv4FN7h3bhxlVR8J2vqMPYDchbkFK9rwBSd0KCEgADCHjBdjCqTmhQP16ynezlJLQBc8Ve1_oopZyGUe7Y7_0RC7pGJdYWXeU5cFwWkc_bhgvvv_JCB0pUsOVS-VpjOnCH1aEnzyu5nLzIxVPhKaclJsLCKQRyjcfEn1asUZyPWImfsLnjBi2xHeN64inmGRtxTz-jo_qGvQq4VHr7d16z758-ftvfi4cvd5_3Hx6E62FqwuAUxtl7P2o14qgwyG4EHVzQDmmeAftpe1pDGLUhCoM3qEgqMwejldH9NXt36T2X_LRSbfYxryVtJy2YzgxqGjq1peCSciXXWijYc4knLL8sSPus3F6U2025fVZuYWO6C1O3bDpQ-af5v9AfBiKHIw</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Fukuchi, Yutaka</creator><creator>Kimura, Tomotaka</creator><creator>Hirata, Kouji</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-2416-9578</orcidid></search><sort><creationdate>20170901</creationdate><title>Characteristics of all-optical 3R regenerators using cascaded second-order nonlinear effect in quasi-phase matched lithium niobate devices</title><author>Fukuchi, Yutaka ; Kimura, Tomotaka ; Hirata, Kouji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-9a6f5bddd5875a57af02518fcf8caebb1a3681781f589eef4d9a7e079bf987983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Computer Communication Networks</topic><topic>Devices</topic><topic>Difference frequency mixing</topic><topic>Electrical Engineering</topic><topic>Lasers</topic><topic>Lithium</topic><topic>Optical Devices</topic><topic>Optics</topic><topic>Phase matching</topic><topic>Photonics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Power efficiency</topic><topic>Regenerators</topic><topic>Second harmonic generation</topic><topic>Switching</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fukuchi, Yutaka</creatorcontrib><creatorcontrib>Kimura, Tomotaka</creatorcontrib><creatorcontrib>Hirata, Kouji</creatorcontrib><collection>CrossRef</collection><jtitle>Optical and quantum electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fukuchi, Yutaka</au><au>Kimura, Tomotaka</au><au>Hirata, Kouji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characteristics of all-optical 3R regenerators using cascaded second-order nonlinear effect in quasi-phase matched lithium niobate devices</atitle><jtitle>Optical and quantum electronics</jtitle><stitle>Opt Quant Electron</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>49</volume><issue>9</issue><spage>1</spage><epage>16</epage><pages>1-16</pages><artnum>297</artnum><issn>0306-8919</issn><eissn>1572-817X</eissn><abstract>We numerically show that quasi-phase matched (QPM) lithium niobate (LN) devices employing the cascaded second-order nonlinear effect of second harmonic generation (SHG) and difference frequency mixing (DFM) have all-optical decision gate characteristics. The decision gate function is realized by a parabolic transmittance for a low-power region and a limiting characteristic for a high-power region. The limiter function is attributed to the large group-velocity mismatch between the fundamental and second harmonic pulses. This operation principle differs from those of other all-optical 2R (reamplification and reshaping) or 3R (2R and retiming) regenerators that have been proposed in the past. Furthermore, we show that an initial time offset between the signal and clock pulses can improve the output signal power or the switching efficiency of the device. Based on the numerical results, we propose a method for designing all-optical 3R regenerators using the cascade of SHG and DFM in the QPM-LN devices. Following the design method, all-optical 3R operation at the bit rate of 200 Gbps can be achieved using a 1-cm-long waveguide device.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11082-017-1141-1</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-2416-9578</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0306-8919
ispartof Optical and quantum electronics, 2017-09, Vol.49 (9), p.1-16, Article 297
issn 0306-8919
1572-817X
language eng
recordid cdi_proquest_journals_1929476427
source Springer Link
subjects Characterization and Evaluation of Materials
Computer Communication Networks
Devices
Difference frequency mixing
Electrical Engineering
Lasers
Lithium
Optical Devices
Optics
Phase matching
Photonics
Physics
Physics and Astronomy
Power efficiency
Regenerators
Second harmonic generation
Switching
title Characteristics of all-optical 3R regenerators using cascaded second-order nonlinear effect in quasi-phase matched lithium niobate devices
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characteristics%20of%20all-optical%203R%20regenerators%20using%20cascaded%20second-order%20nonlinear%20effect%20in%20quasi-phase%20matched%20lithium%20niobate%20devices&rft.jtitle=Optical%20and%20quantum%20electronics&rft.au=Fukuchi,%20Yutaka&rft.date=2017-09-01&rft.volume=49&rft.issue=9&rft.spage=1&rft.epage=16&rft.pages=1-16&rft.artnum=297&rft.issn=0306-8919&rft.eissn=1572-817X&rft_id=info:doi/10.1007/s11082-017-1141-1&rft_dat=%3Cproquest_cross%3E1929476427%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-9a6f5bddd5875a57af02518fcf8caebb1a3681781f589eef4d9a7e079bf987983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929476427&rft_id=info:pmid/&rfr_iscdi=true