Loading…

Some Results on the Rational Bernstein–Markov Property in the Complex Plane

The Bernstein–Markov property is an asymptotic quantitative assumption on the growth of uniform norms of polynomials or rational functions on a compact set with respect to L μ 2 -norms, where μ is a positive finite measure. We consider two variants of the Bernstein–Markov property for rational funct...

Full description

Saved in:
Bibliographic Details
Published in:Computational methods and function theory 2017-09, Vol.17 (3), p.405-443
Main Author: Piazzon, Federico
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-519c148149535fd66c421fac6c4042d2bd703c9e57682d7c2031ad03b4c634613
cites cdi_FETCH-LOGICAL-c316t-519c148149535fd66c421fac6c4042d2bd703c9e57682d7c2031ad03b4c634613
container_end_page 443
container_issue 3
container_start_page 405
container_title Computational methods and function theory
container_volume 17
creator Piazzon, Federico
description The Bernstein–Markov property is an asymptotic quantitative assumption on the growth of uniform norms of polynomials or rational functions on a compact set with respect to L μ 2 -norms, where μ is a positive finite measure. We consider two variants of the Bernstein–Markov property for rational functions with restricted poles and compare them with the polynomial Bernstein–Markov property to find some sufficient conditions for the latter to imply the former. Moreover, we recover a sufficient mass-density condition for a measure to satisfy the rational Bernstein–Markov property on its support. Finally we present, as an application, a meromorphic L 2 version of the Bernstein–Walsh Lemma.
doi_str_mv 10.1007/s40315-017-0194-2
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1929476448</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929476448</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-519c148149535fd66c421fac6c4042d2bd703c9e57682d7c2031ad03b4c634613</originalsourceid><addsrcrecordid>eNp1kE1OwzAQhS0EEqVwAHaRWAc89sSul1DxJ7Wi4mdtuY4DKWlc7BTRHXfghpwEV2HBhsXoaTTfG808Qo6BngKl8iwi5VDkFGQqhTnbIQMGqsi5ZLhLBiDSRCHKfXIQ44LSAhXnAzJ98EuX3bu4brqY-TbrXlJrutq3pskuXGhj5-r2-_NrasKrf89mwa9c6DZZ3bNjv1w17iObNaZ1h2SvMk10R786JE9Xl4_jm3xyd307Pp_kloPo8gKUBRwBqoIXVSmERQaVsUkpspLNS0m5Va6QYsRKaVn6zZSUz9EKjgL4kJz0e1fBv61d7PTCr0O6OGpQTKEUiKNEQU_Z4GMMrtKrUC9N2Gigepua7lPTKTW9TU2z5GG9Jya2fXbhz-Z_TT9LH27I</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929476448</pqid></control><display><type>article</type><title>Some Results on the Rational Bernstein–Markov Property in the Complex Plane</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Piazzon, Federico</creator><creatorcontrib>Piazzon, Federico</creatorcontrib><description>The Bernstein–Markov property is an asymptotic quantitative assumption on the growth of uniform norms of polynomials or rational functions on a compact set with respect to L μ 2 -norms, where μ is a positive finite measure. We consider two variants of the Bernstein–Markov property for rational functions with restricted poles and compare them with the polynomial Bernstein–Markov property to find some sufficient conditions for the latter to imply the former. Moreover, we recover a sufficient mass-density condition for a measure to satisfy the rational Bernstein–Markov property on its support. Finally we present, as an application, a meromorphic L 2 version of the Bernstein–Walsh Lemma.</description><identifier>ISSN: 1617-9447</identifier><identifier>EISSN: 2195-3724</identifier><identifier>DOI: 10.1007/s40315-017-0194-2</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Analysis ; Asymptotic properties ; Computational Mathematics and Numerical Analysis ; Functions (mathematics) ; Functions of a Complex Variable ; Markov processes ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Norms ; Polynomials ; Rational functions</subject><ispartof>Computational methods and function theory, 2017-09, Vol.17 (3), p.405-443</ispartof><rights>Springer-Verlag Berlin Heidelberg 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-519c148149535fd66c421fac6c4042d2bd703c9e57682d7c2031ad03b4c634613</citedby><cites>FETCH-LOGICAL-c316t-519c148149535fd66c421fac6c4042d2bd703c9e57682d7c2031ad03b4c634613</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Piazzon, Federico</creatorcontrib><title>Some Results on the Rational Bernstein–Markov Property in the Complex Plane</title><title>Computational methods and function theory</title><addtitle>Comput. Methods Funct. Theory</addtitle><description>The Bernstein–Markov property is an asymptotic quantitative assumption on the growth of uniform norms of polynomials or rational functions on a compact set with respect to L μ 2 -norms, where μ is a positive finite measure. We consider two variants of the Bernstein–Markov property for rational functions with restricted poles and compare them with the polynomial Bernstein–Markov property to find some sufficient conditions for the latter to imply the former. Moreover, we recover a sufficient mass-density condition for a measure to satisfy the rational Bernstein–Markov property on its support. Finally we present, as an application, a meromorphic L 2 version of the Bernstein–Walsh Lemma.</description><subject>Analysis</subject><subject>Asymptotic properties</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Functions (mathematics)</subject><subject>Functions of a Complex Variable</subject><subject>Markov processes</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><subject>Polynomials</subject><subject>Rational functions</subject><issn>1617-9447</issn><issn>2195-3724</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE1OwzAQhS0EEqVwAHaRWAc89sSul1DxJ7Wi4mdtuY4DKWlc7BTRHXfghpwEV2HBhsXoaTTfG808Qo6BngKl8iwi5VDkFGQqhTnbIQMGqsi5ZLhLBiDSRCHKfXIQ44LSAhXnAzJ98EuX3bu4brqY-TbrXlJrutq3pskuXGhj5-r2-_NrasKrf89mwa9c6DZZ3bNjv1w17iObNaZ1h2SvMk10R786JE9Xl4_jm3xyd307Pp_kloPo8gKUBRwBqoIXVSmERQaVsUkpspLNS0m5Va6QYsRKaVn6zZSUz9EKjgL4kJz0e1fBv61d7PTCr0O6OGpQTKEUiKNEQU_Z4GMMrtKrUC9N2Gigepua7lPTKTW9TU2z5GG9Jya2fXbhz-Z_TT9LH27I</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Piazzon, Federico</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>Some Results on the Rational Bernstein–Markov Property in the Complex Plane</title><author>Piazzon, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-519c148149535fd66c421fac6c4042d2bd703c9e57682d7c2031ad03b4c634613</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Asymptotic properties</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Functions (mathematics)</topic><topic>Functions of a Complex Variable</topic><topic>Markov processes</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><topic>Polynomials</topic><topic>Rational functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Piazzon, Federico</creatorcontrib><collection>CrossRef</collection><jtitle>Computational methods and function theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Piazzon, Federico</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Some Results on the Rational Bernstein–Markov Property in the Complex Plane</atitle><jtitle>Computational methods and function theory</jtitle><stitle>Comput. Methods Funct. Theory</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>17</volume><issue>3</issue><spage>405</spage><epage>443</epage><pages>405-443</pages><issn>1617-9447</issn><eissn>2195-3724</eissn><abstract>The Bernstein–Markov property is an asymptotic quantitative assumption on the growth of uniform norms of polynomials or rational functions on a compact set with respect to L μ 2 -norms, where μ is a positive finite measure. We consider two variants of the Bernstein–Markov property for rational functions with restricted poles and compare them with the polynomial Bernstein–Markov property to find some sufficient conditions for the latter to imply the former. Moreover, we recover a sufficient mass-density condition for a measure to satisfy the rational Bernstein–Markov property on its support. Finally we present, as an application, a meromorphic L 2 version of the Bernstein–Walsh Lemma.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40315-017-0194-2</doi><tpages>39</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1617-9447
ispartof Computational methods and function theory, 2017-09, Vol.17 (3), p.405-443
issn 1617-9447
2195-3724
language eng
recordid cdi_proquest_journals_1929476448
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Analysis
Asymptotic properties
Computational Mathematics and Numerical Analysis
Functions (mathematics)
Functions of a Complex Variable
Markov processes
Mathematical analysis
Mathematics
Mathematics and Statistics
Norms
Polynomials
Rational functions
title Some Results on the Rational Bernstein–Markov Property in the Complex Plane
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A58%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Some%20Results%20on%20the%20Rational%20Bernstein%E2%80%93Markov%20Property%20in%20the%20Complex%20Plane&rft.jtitle=Computational%20methods%20and%20function%20theory&rft.au=Piazzon,%20Federico&rft.date=2017-09-01&rft.volume=17&rft.issue=3&rft.spage=405&rft.epage=443&rft.pages=405-443&rft.issn=1617-9447&rft.eissn=2195-3724&rft_id=info:doi/10.1007/s40315-017-0194-2&rft_dat=%3Cproquest_cross%3E1929476448%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-519c148149535fd66c421fac6c4042d2bd703c9e57682d7c2031ad03b4c634613%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929476448&rft_id=info:pmid/&rfr_iscdi=true