Loading…
Time-domain model for wheel-rail noise analysis at high operation speed
This paper develops a numerical model for wheel-rail noise analysis in the time-domain. This model for wheel-rail noise is based on vehicle-track coupling dynamics considering the effect of flexible wheelsets and track, and a transient wheel-rail noise prediction method. This model can approximative...
Saved in:
Published in: | Journal of Zhejiang University. A. Science 2017-08, Vol.18 (8), p.593-602 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper develops a numerical model for wheel-rail noise analysis in the time-domain. This model for wheel-rail noise is based on vehicle-track coupling dynamics considering the effect of flexible wheelsets and track, and a transient wheel-rail noise prediction method. This model can approximatively characterize the components of vibration and noise in the frequency range up to 3.5 kHz. The wheel-rail forces are calculated and shown in both time and frequency domains by using the vehicle- track coupling dynamic model. Then the vibration and sound of the flexible wheelset are calculated by the transient finite element- boundary element (FE-BE) prediction model at 300 kin/h, in which the effects of random irregularity and discrete supporting excitation are considered. The numerical results calculated by using the present model are discussed. The present model is also used to calculate the effect of corrugation with wavelengths of 40 mm to 300 mm on wheel-rail noise. The numerical results can be useful for academic research and engineering application to railway noise and vibration. |
---|---|
ISSN: | 1673-565X 1862-1775 |
DOI: | 10.1631/jzus.A1600692 |