Loading…

Application of a full‐scale wood gasification biochar as a soil improver to reduce organic pollutant leaching risks

BACKGROUND The application of biochar to sandy loam soil to reduce leaching of three representative pollutants (a persistent hydrocarbon (phenanthrene; logKOW 4.46), a herbicide (isoproturon; logKOW 2.50), and an antibiotic (sulfamethazine; logKOW 0.28)) were investigated. The wood‐derived biochar e...

Full description

Saved in:
Bibliographic Details
Published in:Journal of chemical technology and biotechnology (1986) 2017-08, Vol.92 (8), p.1928-1937
Main Authors: Trinh, Bao‐Son, Werner, David, Reid, Brian J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3699-fbb15492be660dd1d5121bc167dfd8841fd15d262b5de56a94d9025fa77c0b333
cites cdi_FETCH-LOGICAL-c3699-fbb15492be660dd1d5121bc167dfd8841fd15d262b5de56a94d9025fa77c0b333
container_end_page 1937
container_issue 8
container_start_page 1928
container_title Journal of chemical technology and biotechnology (1986)
container_volume 92
creator Trinh, Bao‐Son
Werner, David
Reid, Brian J
description BACKGROUND The application of biochar to sandy loam soil to reduce leaching of three representative pollutants (a persistent hydrocarbon (phenanthrene; logKOW 4.46), a herbicide (isoproturon; logKOW 2.50), and an antibiotic (sulfamethazine; logKOW 0.28)) were investigated. The wood‐derived biochar evaluated in our laboratory study was the solid co‐product of a full‐scale gasifier feeding a combined heat and power plant. The research aimed to demonstrate multiple environmental benefits with the innovative use of this biochar as a soil improver. RESULTS Batch sorption experiments indicated that 5% biochar added to soil enhanced the partitioning coefficient (Kd) by factors of 2 for phenanthrene and 20 for both sulfamethazine and isoproturon. Column leaching experiments indicated a reduced porewater flow rate, up to 80% slower in the column amended with 5% biochar, and reduced pollutant leaching risks. Numerical models interlinked batch and column study observations. CONCLUSION (i) Biochar enhanced sorption for the hydrophobic pollutant phenanthrene, and also the less hydrophobic pollutants sulfamethazine and isoproturon; (ii) reduced porewater flow rates following biochar amendment gave rise to greater opportunity for pollutant–solid interaction; (iii) mixing with soil resulted in biochar fouling affecting pollutant partition; and (iv) irreversible retention of pollutants by the soil was an important mechanism affecting pollutant transport. © 2017 Society of Chemical Industry
doi_str_mv 10.1002/jctb.5219
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1929851569</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1929851569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3699-fbb15492be660dd1d5121bc167dfd8841fd15d262b5de56a94d9025fa77c0b333</originalsourceid><addsrcrecordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtLZTO_FYKq6qxFJmy_GldXHjYCdU3XgEnpEnIaUwMp3lO7cfgEuMRhghMl6rthpRgvkRGGDEi2zCGDoGA0RYmRFa0FNwltIaIcRKwgagmzaNd0q2LtQwWCih7bz_-vhMSnoDtyFouJTJ2T9TuaBWMkKZepuC89BtmhjeTYRtgNHoThkY4lLWTsEmeN-1sm6hN1KtXL2E0aXXdA5OrPTJXPzWIXi5u13MHrL58_3jbDrPVM44z2xVYTrhpDL9E1pjTTHBlcKs0FaX5QRbjakmjFRUG8okn2iOCLWyKBSq8jwfgqvD3P7Ct86kVqxDF-t-pcCc8JJiynivrg9KxZBSNFY00W1k3AmMxD5VsU9V7FPt7fhgt86b3f9QPM0WNz8d39NZfCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1929851569</pqid></control><display><type>article</type><title>Application of a full‐scale wood gasification biochar as a soil improver to reduce organic pollutant leaching risks</title><source>Wiley</source><creator>Trinh, Bao‐Son ; Werner, David ; Reid, Brian J</creator><creatorcontrib>Trinh, Bao‐Son ; Werner, David ; Reid, Brian J</creatorcontrib><description>BACKGROUND The application of biochar to sandy loam soil to reduce leaching of three representative pollutants (a persistent hydrocarbon (phenanthrene; logKOW 4.46), a herbicide (isoproturon; logKOW 2.50), and an antibiotic (sulfamethazine; logKOW 0.28)) were investigated. The wood‐derived biochar evaluated in our laboratory study was the solid co‐product of a full‐scale gasifier feeding a combined heat and power plant. The research aimed to demonstrate multiple environmental benefits with the innovative use of this biochar as a soil improver. RESULTS Batch sorption experiments indicated that 5% biochar added to soil enhanced the partitioning coefficient (Kd) by factors of 2 for phenanthrene and 20 for both sulfamethazine and isoproturon. Column leaching experiments indicated a reduced porewater flow rate, up to 80% slower in the column amended with 5% biochar, and reduced pollutant leaching risks. Numerical models interlinked batch and column study observations. CONCLUSION (i) Biochar enhanced sorption for the hydrophobic pollutant phenanthrene, and also the less hydrophobic pollutants sulfamethazine and isoproturon; (ii) reduced porewater flow rates following biochar amendment gave rise to greater opportunity for pollutant–solid interaction; (iii) mixing with soil resulted in biochar fouling affecting pollutant partition; and (iv) irreversible retention of pollutants by the soil was an important mechanism affecting pollutant transport. © 2017 Society of Chemical Industry</description><identifier>ISSN: 0268-2575</identifier><identifier>EISSN: 1097-4660</identifier><identifier>DOI: 10.1002/jctb.5219</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Antibiotics ; char ; Charcoal ; Cogeneration ; diffusion ; Electric power generation ; Electric power plants ; Feeding ; Flow rates ; Flow velocity ; Fouling ; Gasification ; Hydrophobicity ; Isoproturon ; Leaching ; Loam ; Loam soils ; mass transfer ; Mathematical analysis ; Mathematical models ; modelling ; Organic soils ; persistant organic pollutants (POPs) ; Phenanthrene ; Pollutants ; Pollution dispersion ; Pore water ; Power plants ; Sandy loam ; Sandy soils ; Sediment pollution ; Soil pollution ; Soils ; Sorption ; Sulfamethazine ; Wood</subject><ispartof>Journal of chemical technology and biotechnology (1986), 2017-08, Vol.92 (8), p.1928-1937</ispartof><rights>2017 Society of Chemical Industry</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3699-fbb15492be660dd1d5121bc167dfd8841fd15d262b5de56a94d9025fa77c0b333</citedby><cites>FETCH-LOGICAL-c3699-fbb15492be660dd1d5121bc167dfd8841fd15d262b5de56a94d9025fa77c0b333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Trinh, Bao‐Son</creatorcontrib><creatorcontrib>Werner, David</creatorcontrib><creatorcontrib>Reid, Brian J</creatorcontrib><title>Application of a full‐scale wood gasification biochar as a soil improver to reduce organic pollutant leaching risks</title><title>Journal of chemical technology and biotechnology (1986)</title><description>BACKGROUND The application of biochar to sandy loam soil to reduce leaching of three representative pollutants (a persistent hydrocarbon (phenanthrene; logKOW 4.46), a herbicide (isoproturon; logKOW 2.50), and an antibiotic (sulfamethazine; logKOW 0.28)) were investigated. The wood‐derived biochar evaluated in our laboratory study was the solid co‐product of a full‐scale gasifier feeding a combined heat and power plant. The research aimed to demonstrate multiple environmental benefits with the innovative use of this biochar as a soil improver. RESULTS Batch sorption experiments indicated that 5% biochar added to soil enhanced the partitioning coefficient (Kd) by factors of 2 for phenanthrene and 20 for both sulfamethazine and isoproturon. Column leaching experiments indicated a reduced porewater flow rate, up to 80% slower in the column amended with 5% biochar, and reduced pollutant leaching risks. Numerical models interlinked batch and column study observations. CONCLUSION (i) Biochar enhanced sorption for the hydrophobic pollutant phenanthrene, and also the less hydrophobic pollutants sulfamethazine and isoproturon; (ii) reduced porewater flow rates following biochar amendment gave rise to greater opportunity for pollutant–solid interaction; (iii) mixing with soil resulted in biochar fouling affecting pollutant partition; and (iv) irreversible retention of pollutants by the soil was an important mechanism affecting pollutant transport. © 2017 Society of Chemical Industry</description><subject>Antibiotics</subject><subject>char</subject><subject>Charcoal</subject><subject>Cogeneration</subject><subject>diffusion</subject><subject>Electric power generation</subject><subject>Electric power plants</subject><subject>Feeding</subject><subject>Flow rates</subject><subject>Flow velocity</subject><subject>Fouling</subject><subject>Gasification</subject><subject>Hydrophobicity</subject><subject>Isoproturon</subject><subject>Leaching</subject><subject>Loam</subject><subject>Loam soils</subject><subject>mass transfer</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>modelling</subject><subject>Organic soils</subject><subject>persistant organic pollutants (POPs)</subject><subject>Phenanthrene</subject><subject>Pollutants</subject><subject>Pollution dispersion</subject><subject>Pore water</subject><subject>Power plants</subject><subject>Sandy loam</subject><subject>Sandy soils</subject><subject>Sediment pollution</subject><subject>Soil pollution</subject><subject>Soils</subject><subject>Sorption</subject><subject>Sulfamethazine</subject><subject>Wood</subject><issn>0268-2575</issn><issn>1097-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp10LtOwzAUBmALgUQpDLyBJSaGtLZTO_FYKq6qxFJmy_GldXHjYCdU3XgEnpEnIaUwMp3lO7cfgEuMRhghMl6rthpRgvkRGGDEi2zCGDoGA0RYmRFa0FNwltIaIcRKwgagmzaNd0q2LtQwWCih7bz_-vhMSnoDtyFouJTJ2T9TuaBWMkKZepuC89BtmhjeTYRtgNHoThkY4lLWTsEmeN-1sm6hN1KtXL2E0aXXdA5OrPTJXPzWIXi5u13MHrL58_3jbDrPVM44z2xVYTrhpDL9E1pjTTHBlcKs0FaX5QRbjakmjFRUG8okn2iOCLWyKBSq8jwfgqvD3P7Ct86kVqxDF-t-pcCc8JJiynivrg9KxZBSNFY00W1k3AmMxD5VsU9V7FPt7fhgt86b3f9QPM0WNz8d39NZfCM</recordid><startdate>201708</startdate><enddate>201708</enddate><creator>Trinh, Bao‐Son</creator><creator>Werner, David</creator><creator>Reid, Brian J</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope></search><sort><creationdate>201708</creationdate><title>Application of a full‐scale wood gasification biochar as a soil improver to reduce organic pollutant leaching risks</title><author>Trinh, Bao‐Son ; Werner, David ; Reid, Brian J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3699-fbb15492be660dd1d5121bc167dfd8841fd15d262b5de56a94d9025fa77c0b333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Antibiotics</topic><topic>char</topic><topic>Charcoal</topic><topic>Cogeneration</topic><topic>diffusion</topic><topic>Electric power generation</topic><topic>Electric power plants</topic><topic>Feeding</topic><topic>Flow rates</topic><topic>Flow velocity</topic><topic>Fouling</topic><topic>Gasification</topic><topic>Hydrophobicity</topic><topic>Isoproturon</topic><topic>Leaching</topic><topic>Loam</topic><topic>Loam soils</topic><topic>mass transfer</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>modelling</topic><topic>Organic soils</topic><topic>persistant organic pollutants (POPs)</topic><topic>Phenanthrene</topic><topic>Pollutants</topic><topic>Pollution dispersion</topic><topic>Pore water</topic><topic>Power plants</topic><topic>Sandy loam</topic><topic>Sandy soils</topic><topic>Sediment pollution</topic><topic>Soil pollution</topic><topic>Soils</topic><topic>Sorption</topic><topic>Sulfamethazine</topic><topic>Wood</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Trinh, Bao‐Son</creatorcontrib><creatorcontrib>Werner, David</creatorcontrib><creatorcontrib>Reid, Brian J</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Trinh, Bao‐Son</au><au>Werner, David</au><au>Reid, Brian J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Application of a full‐scale wood gasification biochar as a soil improver to reduce organic pollutant leaching risks</atitle><jtitle>Journal of chemical technology and biotechnology (1986)</jtitle><date>2017-08</date><risdate>2017</risdate><volume>92</volume><issue>8</issue><spage>1928</spage><epage>1937</epage><pages>1928-1937</pages><issn>0268-2575</issn><eissn>1097-4660</eissn><abstract>BACKGROUND The application of biochar to sandy loam soil to reduce leaching of three representative pollutants (a persistent hydrocarbon (phenanthrene; logKOW 4.46), a herbicide (isoproturon; logKOW 2.50), and an antibiotic (sulfamethazine; logKOW 0.28)) were investigated. The wood‐derived biochar evaluated in our laboratory study was the solid co‐product of a full‐scale gasifier feeding a combined heat and power plant. The research aimed to demonstrate multiple environmental benefits with the innovative use of this biochar as a soil improver. RESULTS Batch sorption experiments indicated that 5% biochar added to soil enhanced the partitioning coefficient (Kd) by factors of 2 for phenanthrene and 20 for both sulfamethazine and isoproturon. Column leaching experiments indicated a reduced porewater flow rate, up to 80% slower in the column amended with 5% biochar, and reduced pollutant leaching risks. Numerical models interlinked batch and column study observations. CONCLUSION (i) Biochar enhanced sorption for the hydrophobic pollutant phenanthrene, and also the less hydrophobic pollutants sulfamethazine and isoproturon; (ii) reduced porewater flow rates following biochar amendment gave rise to greater opportunity for pollutant–solid interaction; (iii) mixing with soil resulted in biochar fouling affecting pollutant partition; and (iv) irreversible retention of pollutants by the soil was an important mechanism affecting pollutant transport. © 2017 Society of Chemical Industry</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/jctb.5219</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0268-2575
ispartof Journal of chemical technology and biotechnology (1986), 2017-08, Vol.92 (8), p.1928-1937
issn 0268-2575
1097-4660
language eng
recordid cdi_proquest_journals_1929851569
source Wiley
subjects Antibiotics
char
Charcoal
Cogeneration
diffusion
Electric power generation
Electric power plants
Feeding
Flow rates
Flow velocity
Fouling
Gasification
Hydrophobicity
Isoproturon
Leaching
Loam
Loam soils
mass transfer
Mathematical analysis
Mathematical models
modelling
Organic soils
persistant organic pollutants (POPs)
Phenanthrene
Pollutants
Pollution dispersion
Pore water
Power plants
Sandy loam
Sandy soils
Sediment pollution
Soil pollution
Soils
Sorption
Sulfamethazine
Wood
title Application of a full‐scale wood gasification biochar as a soil improver to reduce organic pollutant leaching risks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T20%3A39%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Application%20of%20a%20full%E2%80%90scale%20wood%20gasification%20biochar%20as%20a%20soil%20improver%20to%20reduce%20organic%20pollutant%20leaching%20risks&rft.jtitle=Journal%20of%20chemical%20technology%20and%20biotechnology%20(1986)&rft.au=Trinh,%20Bao%E2%80%90Son&rft.date=2017-08&rft.volume=92&rft.issue=8&rft.spage=1928&rft.epage=1937&rft.pages=1928-1937&rft.issn=0268-2575&rft.eissn=1097-4660&rft_id=info:doi/10.1002/jctb.5219&rft_dat=%3Cproquest_cross%3E1929851569%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3699-fbb15492be660dd1d5121bc167dfd8841fd15d262b5de56a94d9025fa77c0b333%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1929851569&rft_id=info:pmid/&rfr_iscdi=true