Loading…

Phytochrome B-dependent regulation of reductive phase of photosynthetic carbon assimilation

The experiments were conducted with 10-day-old seedlings of wheat ( Triticum aestivum L). Phytochrome B was activated using an array of light diodes emitting light in the red spectral region (RL) and inactivated by an array of light diodes emitting far-red light (FRL). At the end of the night dark p...

Full description

Saved in:
Bibliographic Details
Published in:Russian journal of plant physiology 2017-09, Vol.64 (5), p.776-781
Main Authors: Lyubimov, V. Yu, Kreslavskii, V. D.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The experiments were conducted with 10-day-old seedlings of wheat ( Triticum aestivum L). Phytochrome B was activated using an array of light diodes emitting light in the red spectral region (RL) and inactivated by an array of light diodes emitting far-red light (FRL). At the end of the night dark period (8 h), activity of the chloroplastic GAP-dehydrogenase complex (the sequence of reactions: 3-PGA → 1,3-PGA → 3-GAP) was 1.0−1.2 μmol of oxidized NADPH/(min g fr wt of the leaf). When the leaves of intact plants were exposed to a maximal dose of RL (20 min at 17.5 kJ/m 2 ), enzyme activity rose by 100–120%. Longer exposure to RL (30 and 40 min) did not cause further activation. Successive exposure to RL and FRL (20 min at 3.0 kJ/m 2 ) completely negated a stimulatory effect of RL. It was shown that as little as 5-min-long exposure to RL increased the rate of 3-GAP formation by 20–25%, and enzyme activity rose linearly when radiation dose was elevated. Determination of the lifetime of RL-activated state by its decrease in plants placed in darkness showed that decay occurred with τ 1/2 of 50−60 min when RL was switched off. Thus, a phytochrome B-induced regulation of reducing enzyme complex governing the reductive pentose phosphate cycle was discovered. Judging from the kinetics of attenuation of the activated state, phytochrome B apparently does not affect de novo synthesis of the enzyme. Since the investigated metabolic process consists of two coupled reactions controlled by kinase and dehydrogenase, the place and mechanism of action of the phytochrome system remain unknown.
ISSN:1021-4437
1608-3407
DOI:10.1134/S1021443717040082