Loading…

Integrable cosmological potentials

The problem of classification of the Einstein–Friedman cosmological Hamiltonians H with a single scalar inflaton field φ , which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H = 0 , is considered. Necessary and sufficient conditions for the e...

Full description

Saved in:
Bibliographic Details
Published in:Letters in mathematical physics 2017-09, Vol.107 (9), p.1741-1768
Main Authors: Sokolov, V. V., Sorin, A. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-db8bec6e0661b4a13250fd14db00b38338a825411ae85dec44a2d2ba1fd91ceb3
cites cdi_FETCH-LOGICAL-c316t-db8bec6e0661b4a13250fd14db00b38338a825411ae85dec44a2d2ba1fd91ceb3
container_end_page 1768
container_issue 9
container_start_page 1741
container_title Letters in mathematical physics
container_volume 107
creator Sokolov, V. V.
Sorin, A. S.
description The problem of classification of the Einstein–Friedman cosmological Hamiltonians H with a single scalar inflaton field φ , which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H = 0 , is considered. Necessary and sufficient conditions for the existence of the first-, second- and third-degree integrals are derived. These conditions have the form of ODEs for the cosmological potential V ( φ ) . In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described, and sporadic superintegrable cases are discussed.
doi_str_mv 10.1007/s11005-017-0962-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1930132316</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930132316</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-db8bec6e0661b4a13250fd14db00b38338a825411ae85dec44a2d2ba1fd91ceb3</originalsourceid><addsrcrecordid>eNp1kDtPwzAUhS0EEqHwA9gqmA332nEeI6qgVKrEArPlV6JUaRzsdMi_x1UYWJjOcM93ju4h5B7hCQHK54hJBAUsKdQFo_MFyVCUnILgcEky4GVJ63S-JjcxHiAxTEBGHnbD5NqgdO_Wxsej733bGdWvRz-5YepUH2_JVZPE3f3qiny9vX5u3un-Y7vbvOyp4VhM1OpKO1M4KArUuUKe8huLudUAmlecV6piIkdUrhLWmTxXzDKtsLE1Gqf5ijwuuWPw3ycXJ3nwpzCkSok1hxSYepILF5cJPsbgGjmG7qjCLBHkeQq5TCHTr_I8hZwTwxYmJu_QuvAn-V_oB2xZYNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930132316</pqid></control><display><type>article</type><title>Integrable cosmological potentials</title><source>Springer Link</source><creator>Sokolov, V. V. ; Sorin, A. S.</creator><creatorcontrib>Sokolov, V. V. ; Sorin, A. S.</creatorcontrib><description>The problem of classification of the Einstein–Friedman cosmological Hamiltonians H with a single scalar inflaton field φ , which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H = 0 , is considered. Necessary and sufficient conditions for the existence of the first-, second- and third-degree integrals are derived. These conditions have the form of ODEs for the cosmological potential V ( φ ) . In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described, and sporadic superintegrable cases are discussed.</description><identifier>ISSN: 0377-9017</identifier><identifier>EISSN: 1573-0530</identifier><identifier>DOI: 10.1007/s11005-017-0962-y</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Complex Systems ; Economic models ; Functions (mathematics) ; Geometry ; Group Theory and Generalizations ; Hamiltonian functions ; Integrals ; Legendre functions ; Mathematical analysis ; Mathematical and Computational Physics ; Physics ; Physics and Astronomy ; Theoretical</subject><ispartof>Letters in mathematical physics, 2017-09, Vol.107 (9), p.1741-1768</ispartof><rights>Springer Science+Business Media Dordrecht 2017</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-db8bec6e0661b4a13250fd14db00b38338a825411ae85dec44a2d2ba1fd91ceb3</citedby><cites>FETCH-LOGICAL-c316t-db8bec6e0661b4a13250fd14db00b38338a825411ae85dec44a2d2ba1fd91ceb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Sokolov, V. V.</creatorcontrib><creatorcontrib>Sorin, A. S.</creatorcontrib><title>Integrable cosmological potentials</title><title>Letters in mathematical physics</title><addtitle>Lett Math Phys</addtitle><description>The problem of classification of the Einstein–Friedman cosmological Hamiltonians H with a single scalar inflaton field φ , which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H = 0 , is considered. Necessary and sufficient conditions for the existence of the first-, second- and third-degree integrals are derived. These conditions have the form of ODEs for the cosmological potential V ( φ ) . In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described, and sporadic superintegrable cases are discussed.</description><subject>Complex Systems</subject><subject>Economic models</subject><subject>Functions (mathematics)</subject><subject>Geometry</subject><subject>Group Theory and Generalizations</subject><subject>Hamiltonian functions</subject><subject>Integrals</subject><subject>Legendre functions</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Physics</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Theoretical</subject><issn>0377-9017</issn><issn>1573-0530</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kDtPwzAUhS0EEqHwA9gqmA332nEeI6qgVKrEArPlV6JUaRzsdMi_x1UYWJjOcM93ju4h5B7hCQHK54hJBAUsKdQFo_MFyVCUnILgcEky4GVJ63S-JjcxHiAxTEBGHnbD5NqgdO_Wxsej733bGdWvRz-5YepUH2_JVZPE3f3qiny9vX5u3un-Y7vbvOyp4VhM1OpKO1M4KArUuUKe8huLudUAmlecV6piIkdUrhLWmTxXzDKtsLE1Gqf5ijwuuWPw3ycXJ3nwpzCkSok1hxSYepILF5cJPsbgGjmG7qjCLBHkeQq5TCHTr_I8hZwTwxYmJu_QuvAn-V_oB2xZYNk</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Sokolov, V. V.</creator><creator>Sorin, A. S.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>Integrable cosmological potentials</title><author>Sokolov, V. V. ; Sorin, A. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-db8bec6e0661b4a13250fd14db00b38338a825411ae85dec44a2d2ba1fd91ceb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Complex Systems</topic><topic>Economic models</topic><topic>Functions (mathematics)</topic><topic>Geometry</topic><topic>Group Theory and Generalizations</topic><topic>Hamiltonian functions</topic><topic>Integrals</topic><topic>Legendre functions</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Physics</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sokolov, V. V.</creatorcontrib><creatorcontrib>Sorin, A. S.</creatorcontrib><collection>CrossRef</collection><jtitle>Letters in mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sokolov, V. V.</au><au>Sorin, A. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrable cosmological potentials</atitle><jtitle>Letters in mathematical physics</jtitle><stitle>Lett Math Phys</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>107</volume><issue>9</issue><spage>1741</spage><epage>1768</epage><pages>1741-1768</pages><issn>0377-9017</issn><eissn>1573-0530</eissn><abstract>The problem of classification of the Einstein–Friedman cosmological Hamiltonians H with a single scalar inflaton field φ , which possess an additional integral of motion polynomial in momenta on the shell of the Friedman constraint H = 0 , is considered. Necessary and sufficient conditions for the existence of the first-, second- and third-degree integrals are derived. These conditions have the form of ODEs for the cosmological potential V ( φ ) . In the case of linear and quadratic integrals we find general solutions of the ODEs and construct the corresponding integrals explicitly. A new wide class of Hamiltonians that possess a cubic integral is derived. The corresponding potentials are represented in parametric form in terms of the associated Legendre functions. Six families of special elementary solutions are described, and sporadic superintegrable cases are discussed.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11005-017-0962-y</doi><tpages>28</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0377-9017
ispartof Letters in mathematical physics, 2017-09, Vol.107 (9), p.1741-1768
issn 0377-9017
1573-0530
language eng
recordid cdi_proquest_journals_1930132316
source Springer Link
subjects Complex Systems
Economic models
Functions (mathematics)
Geometry
Group Theory and Generalizations
Hamiltonian functions
Integrals
Legendre functions
Mathematical analysis
Mathematical and Computational Physics
Physics
Physics and Astronomy
Theoretical
title Integrable cosmological potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T13%3A47%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrable%20cosmological%20potentials&rft.jtitle=Letters%20in%20mathematical%20physics&rft.au=Sokolov,%20V.%20V.&rft.date=2017-09-01&rft.volume=107&rft.issue=9&rft.spage=1741&rft.epage=1768&rft.pages=1741-1768&rft.issn=0377-9017&rft.eissn=1573-0530&rft_id=info:doi/10.1007/s11005-017-0962-y&rft_dat=%3Cproquest_cross%3E1930132316%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-db8bec6e0661b4a13250fd14db00b38338a825411ae85dec44a2d2ba1fd91ceb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1930132316&rft_id=info:pmid/&rfr_iscdi=true