Loading…
Comparison of membrane and conventional reactors under dry methane reforming conditions
A flow-through catalytic membrane reactor has been experimentally compared with a conventional fixed bed catalytic reactor by matching the specific rate constants in the reaction of dry reforming of methane. Crushed membrane and powdered catalysts with tungsten carbide as the active ingredient have...
Saved in:
Published in: | Petroleum chemistry 2017-09, Vol.57 (9), p.804-812 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A flow-through catalytic membrane reactor has been experimentally compared with a conventional fixed bed catalytic reactor by matching the specific rate constants in the reaction of dry reforming of methane. Crushed membrane and powdered catalysts with tungsten carbide as the active ingredient have been used as a reference in the conventional reactor. An increase in the reaction rate in the membrane reactor has been explained in terms of emerging Knudsen transport and also by the features of the membrane catalyst, which make it possible to force transport in the pore space of the catalytically active substance. It has been assumed that the “rarefaction” of the gases in the catalyst pores can be accompanied by a change in the equilibrium and a shift in the process toward the products of the direct reaction. |
---|---|
ISSN: | 0965-5441 1555-6239 |
DOI: | 10.1134/S0965544117090031 |