Loading…

Upper bound for the length of functions over a finite field in the class of pseudopolynomials

An exclusive-OR sum of pseudoproducts (ESPP), or a pseudopolynomial over a finite field is a sum of products of linear functions. The length of an ESPP is defined as the number of its pairwise distinct summands. The length of a function f over this field in the class of ESPPs is the minimum length o...

Full description

Saved in:
Bibliographic Details
Published in:Computational mathematics and mathematical physics 2017-05, Vol.57 (5), p.898-903
Main Author: Selezneva, S. N.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c268t-5e86dfdd469c4261c6e7425f9cedd2e365afc483c2cd40dc0241f6584bcb8b633
container_end_page 903
container_issue 5
container_start_page 898
container_title Computational mathematics and mathematical physics
container_volume 57
creator Selezneva, S. N.
description An exclusive-OR sum of pseudoproducts (ESPP), or a pseudopolynomial over a finite field is a sum of products of linear functions. The length of an ESPP is defined as the number of its pairwise distinct summands. The length of a function f over this field in the class of ESPPs is the minimum length of an ESPP representing this function. The Shannon length function L k ESPP ( n ) on the set of functions over a finite field of k elements in the class of ESPPs is considered; it is defined as the maximum length of a function of n variables over this field in the class of ESPPs. It is proved that L k ESPP ( n ) = O ( k n / n 2 ).
doi_str_mv 10.1134/S0965542517050116
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1930451186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1930451186</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-5e86dfdd469c4261c6e7425f9cedd2e365afc483c2cd40dc0241f6584bcb8b633</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOI7-AHcB19XcNLnTLmXwBQMudJZS2jxmOnSSmrSC_97UcSGIq7M43zn3cgi5BHYNkIubF1ailIJLWDDJAPCIzEBKmSEiPyazyc4m_5ScxbhjDLAs8hl5W_e9CbTxo9PU-kCHraGdcZthS72ldnRqaL2L1H8krKa2de1gkphO09Z946qrY5zoPppR-953n87v27qL5-TEJjEXPzon6_u71-Vjtnp-eFrerjLFsRgyaQrUVmuBpRIcQaFZpFdtqYzW3OQoa6tEkSuutGBaMS7AoixEo5qiwTyfk6tDbx_8-2jiUO38GFw6WUGZMyEBCkwUHCgVfIzB2KoP7b4OnxWwalqx-rNiyvBDJibWbUz41fxv6AvmnnRv</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1930451186</pqid></control><display><type>article</type><title>Upper bound for the length of functions over a finite field in the class of pseudopolynomials</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Selezneva, S. N.</creator><creatorcontrib>Selezneva, S. N.</creatorcontrib><description>An exclusive-OR sum of pseudoproducts (ESPP), or a pseudopolynomial over a finite field is a sum of products of linear functions. The length of an ESPP is defined as the number of its pairwise distinct summands. The length of a function f over this field in the class of ESPPs is the minimum length of an ESPP representing this function. The Shannon length function L k ESPP ( n ) on the set of functions over a finite field of k elements in the class of ESPPs is considered; it is defined as the maximum length of a function of n variables over this field in the class of ESPPs. It is proved that L k ESPP ( n ) = O ( k n / n 2 ).</description><identifier>ISSN: 0965-5425</identifier><identifier>EISSN: 1555-6662</identifier><identifier>DOI: 10.1134/S0965542517050116</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Computational Mathematics and Numerical Analysis ; Mathematical analysis ; Mathematics ; Mathematics and Statistics ; Polynomials</subject><ispartof>Computational mathematics and mathematical physics, 2017-05, Vol.57 (5), p.898-903</ispartof><rights>Pleiades Publishing, Ltd. 2017</rights><rights>Computational Mathematics and Mathematical Physics is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-5e86dfdd469c4261c6e7425f9cedd2e365afc483c2cd40dc0241f6584bcb8b633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/1930451186?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,44362</link.rule.ids></links><search><creatorcontrib>Selezneva, S. N.</creatorcontrib><title>Upper bound for the length of functions over a finite field in the class of pseudopolynomials</title><title>Computational mathematics and mathematical physics</title><addtitle>Comput. Math. and Math. Phys</addtitle><description>An exclusive-OR sum of pseudoproducts (ESPP), or a pseudopolynomial over a finite field is a sum of products of linear functions. The length of an ESPP is defined as the number of its pairwise distinct summands. The length of a function f over this field in the class of ESPPs is the minimum length of an ESPP representing this function. The Shannon length function L k ESPP ( n ) on the set of functions over a finite field of k elements in the class of ESPPs is considered; it is defined as the maximum length of a function of n variables over this field in the class of ESPPs. It is proved that L k ESPP ( n ) = O ( k n / n 2 ).</description><subject>Computational Mathematics and Numerical Analysis</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Polynomials</subject><issn>0965-5425</issn><issn>1555-6662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kEtLxDAUhYMoOI7-AHcB19XcNLnTLmXwBQMudJZS2jxmOnSSmrSC_97UcSGIq7M43zn3cgi5BHYNkIubF1ailIJLWDDJAPCIzEBKmSEiPyazyc4m_5ScxbhjDLAs8hl5W_e9CbTxo9PU-kCHraGdcZthS72ldnRqaL2L1H8krKa2de1gkphO09Z946qrY5zoPppR-953n87v27qL5-TEJjEXPzon6_u71-Vjtnp-eFrerjLFsRgyaQrUVmuBpRIcQaFZpFdtqYzW3OQoa6tEkSuutGBaMS7AoixEo5qiwTyfk6tDbx_8-2jiUO38GFw6WUGZMyEBCkwUHCgVfIzB2KoP7b4OnxWwalqx-rNiyvBDJibWbUz41fxv6AvmnnRv</recordid><startdate>20170501</startdate><enddate>20170501</enddate><creator>Selezneva, S. N.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7U5</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20170501</creationdate><title>Upper bound for the length of functions over a finite field in the class of pseudopolynomials</title><author>Selezneva, S. N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-5e86dfdd469c4261c6e7425f9cedd2e365afc483c2cd40dc0241f6584bcb8b633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computational Mathematics and Numerical Analysis</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Polynomials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selezneva, S. N.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Computational mathematics and mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selezneva, S. N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Upper bound for the length of functions over a finite field in the class of pseudopolynomials</atitle><jtitle>Computational mathematics and mathematical physics</jtitle><stitle>Comput. Math. and Math. Phys</stitle><date>2017-05-01</date><risdate>2017</risdate><volume>57</volume><issue>5</issue><spage>898</spage><epage>903</epage><pages>898-903</pages><issn>0965-5425</issn><eissn>1555-6662</eissn><abstract>An exclusive-OR sum of pseudoproducts (ESPP), or a pseudopolynomial over a finite field is a sum of products of linear functions. The length of an ESPP is defined as the number of its pairwise distinct summands. The length of a function f over this field in the class of ESPPs is the minimum length of an ESPP representing this function. The Shannon length function L k ESPP ( n ) on the set of functions over a finite field of k elements in the class of ESPPs is considered; it is defined as the maximum length of a function of n variables over this field in the class of ESPPs. It is proved that L k ESPP ( n ) = O ( k n / n 2 ).</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0965542517050116</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0965-5425
ispartof Computational mathematics and mathematical physics, 2017-05, Vol.57 (5), p.898-903
issn 0965-5425
1555-6662
language eng
recordid cdi_proquest_journals_1930451186
source ABI/INFORM Global; Springer Nature
subjects Computational Mathematics and Numerical Analysis
Mathematical analysis
Mathematics
Mathematics and Statistics
Polynomials
title Upper bound for the length of functions over a finite field in the class of pseudopolynomials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T21%3A58%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Upper%20bound%20for%20the%20length%20of%20functions%20over%20a%20finite%20field%20in%20the%20class%20of%20pseudopolynomials&rft.jtitle=Computational%20mathematics%20and%20mathematical%20physics&rft.au=Selezneva,%20S.%20N.&rft.date=2017-05-01&rft.volume=57&rft.issue=5&rft.spage=898&rft.epage=903&rft.pages=898-903&rft.issn=0965-5425&rft.eissn=1555-6662&rft_id=info:doi/10.1134/S0965542517050116&rft_dat=%3Cproquest_cross%3E1930451186%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c268t-5e86dfdd469c4261c6e7425f9cedd2e365afc483c2cd40dc0241f6584bcb8b633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1930451186&rft_id=info:pmid/&rfr_iscdi=true