Loading…

Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions

In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main r...

Full description

Saved in:
Bibliographic Details
Published in:Positivity : an international journal devoted to the theory and applications of positivity in analysis 2017-09, Vol.21 (3), p.825-845
Main Authors: Neamprem, Khomsan, Muensawat, Thanadon, Ntouyas, Sotiris K., Tariboon, Jessada
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03
cites cdi_FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03
container_end_page 845
container_issue 3
container_start_page 825
container_title Positivity : an international journal devoted to the theory and applications of positivity in analysis
container_volume 21
creator Neamprem, Khomsan
Muensawat, Thanadon
Ntouyas, Sotiris K.
Tariboon, Jessada
description In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main results.
doi_str_mv 10.1007/s11117-016-0433-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931136054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931136054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIvE2eC1ndg5ooqXVAmE4Gy5iV1cpXaxk6Le-g_8IV-CSzlwYS_70Mzs7iB0DuQSCBFXCXIITKDChDOG4QCNoBQU11TCYa6ZLDHQmh6jk5QWhGQWJyO0fQrJ9W5tihS6oXfBp8KGWNiom12nu6J11ppofO9ykzapN8tUfLj-rfDBd6HJ02dnltr7r-3n1IVh7brO_FVwvjfzmItZGHyr46Zogm_dz7ZTdGR1l8zZbx6j19ubl8k9nj7ePUyup7hhUPW41WLGgDa8YtLIRpcVL6taCwlcMJY_ZsCpbbmtgQohZCWtNtoASMZ53RI2Rhd73VUM74NJvVqEIebrkoKaAbCKlDyjYI9qYkgpGqtW0S3zxQqI2hmt9karbLTaGa0gc-iekzLWz038o_wv6Rt6qoPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931136054</pqid></control><display><type>article</type><title>Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Neamprem, Khomsan ; Muensawat, Thanadon ; Ntouyas, Sotiris K. ; Tariboon, Jessada</creator><creatorcontrib>Neamprem, Khomsan ; Muensawat, Thanadon ; Ntouyas, Sotiris K. ; Tariboon, Jessada</creatorcontrib><description>In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main results.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-016-0433-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fixed points (mathematics) ; Fourier Analysis ; Integrals ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2017-09, Vol.21 (3), p.825-845</ispartof><rights>Springer International Publishing 2016</rights><rights>Positivity is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03</citedby><cites>FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03</cites><orcidid>0000-0001-8185-3539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1931136054/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1931136054?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74767</link.rule.ids></links><search><creatorcontrib>Neamprem, Khomsan</creatorcontrib><creatorcontrib>Muensawat, Thanadon</creatorcontrib><creatorcontrib>Ntouyas, Sotiris K.</creatorcontrib><creatorcontrib>Tariboon, Jessada</creatorcontrib><title>Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main results.</description><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fixed points (mathematics)</subject><subject>Fourier Analysis</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcIvE2eC1ndg5ooqXVAmE4Gy5iV1cpXaxk6Le-g_8IV-CSzlwYS_70Mzs7iB0DuQSCBFXCXIITKDChDOG4QCNoBQU11TCYa6ZLDHQmh6jk5QWhGQWJyO0fQrJ9W5tihS6oXfBp8KGWNiom12nu6J11ppofO9ykzapN8tUfLj-rfDBd6HJ02dnltr7r-3n1IVh7brO_FVwvjfzmItZGHyr46Zogm_dz7ZTdGR1l8zZbx6j19ubl8k9nj7ePUyup7hhUPW41WLGgDa8YtLIRpcVL6taCwlcMJY_ZsCpbbmtgQohZCWtNtoASMZ53RI2Rhd73VUM74NJvVqEIebrkoKaAbCKlDyjYI9qYkgpGqtW0S3zxQqI2hmt9karbLTaGa0gc-iekzLWz038o_wv6Rt6qoPU</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Neamprem, Khomsan</creator><creator>Muensawat, Thanadon</creator><creator>Ntouyas, Sotiris K.</creator><creator>Tariboon, Jessada</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8185-3539</orcidid></search><sort><creationdate>20170901</creationdate><title>Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions</title><author>Neamprem, Khomsan ; Muensawat, Thanadon ; Ntouyas, Sotiris K. ; Tariboon, Jessada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fixed points (mathematics)</topic><topic>Fourier Analysis</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neamprem, Khomsan</creatorcontrib><creatorcontrib>Muensawat, Thanadon</creatorcontrib><creatorcontrib>Ntouyas, Sotiris K.</creatorcontrib><creatorcontrib>Tariboon, Jessada</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neamprem, Khomsan</au><au>Muensawat, Thanadon</au><au>Ntouyas, Sotiris K.</au><au>Tariboon, Jessada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>825</spage><epage>845</epage><pages>825-845</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-016-0433-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8185-3539</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1385-1292
ispartof Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2017-09, Vol.21 (3), p.825-845
issn 1385-1292
1572-9281
language eng
recordid cdi_proquest_journals_1931136054
source Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global (ProQuest); Springer Nature
subjects Boundary conditions
Calculus of Variations and Optimal Control
Optimization
Econometrics
Fixed points (mathematics)
Fourier Analysis
Integrals
Mathematics
Mathematics and Statistics
Operator Theory
Potential Theory
title Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20solutions%20for%20fractional%20differential%20systems%20with%20nonlocal%20Riemann%E2%80%93Liouville%20fractional%20integral%20boundary%20conditions&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Neamprem,%20Khomsan&rft.date=2017-09-01&rft.volume=21&rft.issue=3&rft.spage=825&rft.epage=845&rft.pages=825-845&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-016-0433-1&rft_dat=%3Cproquest_cross%3E1931136054%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931136054&rft_id=info:pmid/&rfr_iscdi=true