Loading…
Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions
In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main r...
Saved in:
Published in: | Positivity : an international journal devoted to the theory and applications of positivity in analysis 2017-09, Vol.21 (3), p.825-845 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03 |
container_end_page | 845 |
container_issue | 3 |
container_start_page | 825 |
container_title | Positivity : an international journal devoted to the theory and applications of positivity in analysis |
container_volume | 21 |
creator | Neamprem, Khomsan Muensawat, Thanadon Ntouyas, Sotiris K. Tariboon, Jessada |
description | In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main results. |
doi_str_mv | 10.1007/s11117-016-0433-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931136054</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931136054</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03</originalsourceid><addsrcrecordid>eNp1UMtOwzAQtBBIlMIHcIvE2eC1ndg5ooqXVAmE4Gy5iV1cpXaxk6Le-g_8IV-CSzlwYS_70Mzs7iB0DuQSCBFXCXIITKDChDOG4QCNoBQU11TCYa6ZLDHQmh6jk5QWhGQWJyO0fQrJ9W5tihS6oXfBp8KGWNiom12nu6J11ppofO9ykzapN8tUfLj-rfDBd6HJ02dnltr7r-3n1IVh7brO_FVwvjfzmItZGHyr46Zogm_dz7ZTdGR1l8zZbx6j19ubl8k9nj7ePUyup7hhUPW41WLGgDa8YtLIRpcVL6taCwlcMJY_ZsCpbbmtgQohZCWtNtoASMZ53RI2Rhd73VUM74NJvVqEIebrkoKaAbCKlDyjYI9qYkgpGqtW0S3zxQqI2hmt9karbLTaGa0gc-iekzLWz038o_wv6Rt6qoPU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931136054</pqid></control><display><type>article</type><title>Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions</title><source>Business Source Ultimate【Trial: -2024/12/31】【Remote access available】</source><source>ABI/INFORM Global (ProQuest)</source><source>Springer Nature</source><creator>Neamprem, Khomsan ; Muensawat, Thanadon ; Ntouyas, Sotiris K. ; Tariboon, Jessada</creator><creatorcontrib>Neamprem, Khomsan ; Muensawat, Thanadon ; Ntouyas, Sotiris K. ; Tariboon, Jessada</creatorcontrib><description>In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main results.</description><identifier>ISSN: 1385-1292</identifier><identifier>EISSN: 1572-9281</identifier><identifier>DOI: 10.1007/s11117-016-0433-1</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Boundary conditions ; Calculus of Variations and Optimal Control; Optimization ; Econometrics ; Fixed points (mathematics) ; Fourier Analysis ; Integrals ; Mathematics ; Mathematics and Statistics ; Operator Theory ; Potential Theory</subject><ispartof>Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2017-09, Vol.21 (3), p.825-845</ispartof><rights>Springer International Publishing 2016</rights><rights>Positivity is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03</citedby><cites>FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03</cites><orcidid>0000-0001-8185-3539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1931136054/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1931136054?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74767</link.rule.ids></links><search><creatorcontrib>Neamprem, Khomsan</creatorcontrib><creatorcontrib>Muensawat, Thanadon</creatorcontrib><creatorcontrib>Ntouyas, Sotiris K.</creatorcontrib><creatorcontrib>Tariboon, Jessada</creatorcontrib><title>Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions</title><title>Positivity : an international journal devoted to the theory and applications of positivity in analysis</title><addtitle>Positivity</addtitle><description>In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main results.</description><subject>Boundary conditions</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Econometrics</subject><subject>Fixed points (mathematics)</subject><subject>Fourier Analysis</subject><subject>Integrals</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Operator Theory</subject><subject>Potential Theory</subject><issn>1385-1292</issn><issn>1572-9281</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1UMtOwzAQtBBIlMIHcIvE2eC1ndg5ooqXVAmE4Gy5iV1cpXaxk6Le-g_8IV-CSzlwYS_70Mzs7iB0DuQSCBFXCXIITKDChDOG4QCNoBQU11TCYa6ZLDHQmh6jk5QWhGQWJyO0fQrJ9W5tihS6oXfBp8KGWNiom12nu6J11ppofO9ykzapN8tUfLj-rfDBd6HJ02dnltr7r-3n1IVh7brO_FVwvjfzmItZGHyr46Zogm_dz7ZTdGR1l8zZbx6j19ubl8k9nj7ePUyup7hhUPW41WLGgDa8YtLIRpcVL6taCwlcMJY_ZsCpbbmtgQohZCWtNtoASMZ53RI2Rhd73VUM74NJvVqEIebrkoKaAbCKlDyjYI9qYkgpGqtW0S3zxQqI2hmt9karbLTaGa0gc-iekzLWz038o_wv6Rt6qoPU</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Neamprem, Khomsan</creator><creator>Muensawat, Thanadon</creator><creator>Ntouyas, Sotiris K.</creator><creator>Tariboon, Jessada</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-8185-3539</orcidid></search><sort><creationdate>20170901</creationdate><title>Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions</title><author>Neamprem, Khomsan ; Muensawat, Thanadon ; Ntouyas, Sotiris K. ; Tariboon, Jessada</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Boundary conditions</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Econometrics</topic><topic>Fixed points (mathematics)</topic><topic>Fourier Analysis</topic><topic>Integrals</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Operator Theory</topic><topic>Potential Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Neamprem, Khomsan</creatorcontrib><creatorcontrib>Muensawat, Thanadon</creatorcontrib><creatorcontrib>Ntouyas, Sotiris K.</creatorcontrib><creatorcontrib>Tariboon, Jessada</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>One Business (ProQuest)</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Neamprem, Khomsan</au><au>Muensawat, Thanadon</au><au>Ntouyas, Sotiris K.</au><au>Tariboon, Jessada</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions</atitle><jtitle>Positivity : an international journal devoted to the theory and applications of positivity in analysis</jtitle><stitle>Positivity</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>21</volume><issue>3</issue><spage>825</spage><epage>845</epage><pages>825-845</pages><issn>1385-1292</issn><eissn>1572-9281</eissn><abstract>In this paper, we study the positive solutions of fractional differential system with coupled nonlocal Riemann–Liouville fractional integral boundary conditions. Our analysis relies on Leggett–Williams and Guo–Krasnoselskii’s fixed point theorems. Two examples are worked out to illustrate our main results.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11117-016-0433-1</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-8185-3539</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-1292 |
ispartof | Positivity : an international journal devoted to the theory and applications of positivity in analysis, 2017-09, Vol.21 (3), p.825-845 |
issn | 1385-1292 1572-9281 |
language | eng |
recordid | cdi_proquest_journals_1931136054 |
source | Business Source Ultimate【Trial: -2024/12/31】【Remote access available】; ABI/INFORM Global (ProQuest); Springer Nature |
subjects | Boundary conditions Calculus of Variations and Optimal Control Optimization Econometrics Fixed points (mathematics) Fourier Analysis Integrals Mathematics Mathematics and Statistics Operator Theory Potential Theory |
title | Positive solutions for fractional differential systems with nonlocal Riemann–Liouville fractional integral boundary conditions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A43%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Positive%20solutions%20for%20fractional%20differential%20systems%20with%20nonlocal%20Riemann%E2%80%93Liouville%20fractional%20integral%20boundary%20conditions&rft.jtitle=Positivity%20:%20an%20international%20journal%20devoted%20to%20the%20theory%20and%20applications%20of%20positivity%20in%20analysis&rft.au=Neamprem,%20Khomsan&rft.date=2017-09-01&rft.volume=21&rft.issue=3&rft.spage=825&rft.epage=845&rft.pages=825-845&rft.issn=1385-1292&rft.eissn=1572-9281&rft_id=info:doi/10.1007/s11117-016-0433-1&rft_dat=%3Cproquest_cross%3E1931136054%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-da7b312c4638e8ca564569a78147334333142fd4f912777868faeae1183449d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931136054&rft_id=info:pmid/&rfr_iscdi=true |