Loading…
Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes
The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an i...
Saved in:
Published in: | Bulletin of the Russian Academy of Sciences. Physics 2013-02, Vol.77 (2), p.162-165 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663 |
---|---|
cites | cdi_FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663 |
container_end_page | 165 |
container_issue | 2 |
container_start_page | 162 |
container_title | Bulletin of the Russian Academy of Sciences. Physics |
container_volume | 77 |
creator | Selyutin, A. G. Shmakov, A. N. Kuznetsov, V. L. Moseenkov, S. I. Dudina, D. V. Lomovsky, O. I. |
description | The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (∼20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (∼10 nm) exhibit thermal stability of structural defects up to 500°C. |
doi_str_mv | 10.3103/S1062873813020329 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931173802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931173802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-ok2d00Ryn-g4IH9bxMslmb0k1qslvQT29KexCKpxnmvfcbeIRcM7gVDMTdG4Oaz6SYMQEcBFcnZMKUKAtVCn6a9ywXO_2cXKS0AqgqxasJifMlRjSDje4HBxc8DR3F9dg7P_aFwajzyYR-E5IbbKJBD-i8benWIe2tWaJ3Btc0I9z2CEDRt_QA8ejDMGqbLslZh-tkrw5zSj4eH97nz8Xi9ellfr8oDFdSFRWvamwN8LJGCWhlhxXomkPJ8lEywbVpUTEtpWWmNBp0WSmjsZS6hboWU3Kz525i-BptGppVGKPPL5vcDGO5DODZxfYuE0NK0XbNJroe43fDoNlV2xxVmzN8n0nZ6z9t_EP-N_QLivl8mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931173802</pqid></control><display><type>article</type><title>Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes</title><source>Springer Link</source><creator>Selyutin, A. G. ; Shmakov, A. N. ; Kuznetsov, V. L. ; Moseenkov, S. I. ; Dudina, D. V. ; Lomovsky, O. I.</creator><creatorcontrib>Selyutin, A. G. ; Shmakov, A. N. ; Kuznetsov, V. L. ; Moseenkov, S. I. ; Dudina, D. V. ; Lomovsky, O. I.</creatorcontrib><description>The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (∼20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (∼10 nm) exhibit thermal stability of structural defects up to 500°C.</description><identifier>ISSN: 1062-8738</identifier><identifier>EISSN: 1934-9432</identifier><identifier>DOI: 10.3103/S1062873813020329</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Activation ; Activation analysis ; Aluminum ; Carbon ; Composite materials ; Defects ; Diffraction patterns ; Gas flow ; Hadrons ; Heavy Ions ; Multi wall carbon nanotubes ; Nanotubes ; Nuclear Physics ; Particulate composites ; Physics ; Physics and Astronomy ; Rare gases ; Synchrotron radiation ; Thermal stability ; X ray detectors ; X-ray diffraction ; X-rays</subject><ispartof>Bulletin of the Russian Academy of Sciences. Physics, 2013-02, Vol.77 (2), p.162-165</ispartof><rights>Allerton Press, Inc. 2013</rights><rights>Bulletin of the Russian Academy of Sciences: Physics is a copyright of Springer, 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663</citedby><cites>FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Selyutin, A. G.</creatorcontrib><creatorcontrib>Shmakov, A. N.</creatorcontrib><creatorcontrib>Kuznetsov, V. L.</creatorcontrib><creatorcontrib>Moseenkov, S. I.</creatorcontrib><creatorcontrib>Dudina, D. V.</creatorcontrib><creatorcontrib>Lomovsky, O. I.</creatorcontrib><title>Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes</title><title>Bulletin of the Russian Academy of Sciences. Physics</title><addtitle>Bull. Russ. Acad. Sci. Phys</addtitle><description>The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (∼20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (∼10 nm) exhibit thermal stability of structural defects up to 500°C.</description><subject>Activation</subject><subject>Activation analysis</subject><subject>Aluminum</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Defects</subject><subject>Diffraction patterns</subject><subject>Gas flow</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes</subject><subject>Nuclear Physics</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rare gases</subject><subject>Synchrotron radiation</subject><subject>Thermal stability</subject><subject>X ray detectors</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>1062-8738</issn><issn>1934-9432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-ok2d00Ryn-g4IH9bxMslmb0k1qslvQT29KexCKpxnmvfcbeIRcM7gVDMTdG4Oaz6SYMQEcBFcnZMKUKAtVCn6a9ywXO_2cXKS0AqgqxasJifMlRjSDje4HBxc8DR3F9dg7P_aFwajzyYR-E5IbbKJBD-i8benWIe2tWaJ3Btc0I9z2CEDRt_QA8ejDMGqbLslZh-tkrw5zSj4eH97nz8Xi9ellfr8oDFdSFRWvamwN8LJGCWhlhxXomkPJ8lEywbVpUTEtpWWmNBp0WSmjsZS6hboWU3Kz525i-BptGppVGKPPL5vcDGO5DODZxfYuE0NK0XbNJroe43fDoNlV2xxVmzN8n0nZ6z9t_EP-N_QLivl8mg</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Selyutin, A. G.</creator><creator>Shmakov, A. N.</creator><creator>Kuznetsov, V. L.</creator><creator>Moseenkov, S. I.</creator><creator>Dudina, D. V.</creator><creator>Lomovsky, O. I.</creator><general>Allerton Press, Inc</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201302</creationdate><title>Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes</title><author>Selyutin, A. G. ; Shmakov, A. N. ; Kuznetsov, V. L. ; Moseenkov, S. I. ; Dudina, D. V. ; Lomovsky, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Activation analysis</topic><topic>Aluminum</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Defects</topic><topic>Diffraction patterns</topic><topic>Gas flow</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes</topic><topic>Nuclear Physics</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rare gases</topic><topic>Synchrotron radiation</topic><topic>Thermal stability</topic><topic>X ray detectors</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selyutin, A. G.</creatorcontrib><creatorcontrib>Shmakov, A. N.</creatorcontrib><creatorcontrib>Kuznetsov, V. L.</creatorcontrib><creatorcontrib>Moseenkov, S. I.</creatorcontrib><creatorcontrib>Dudina, D. V.</creatorcontrib><creatorcontrib>Lomovsky, O. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Bulletin of the Russian Academy of Sciences. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selyutin, A. G.</au><au>Shmakov, A. N.</au><au>Kuznetsov, V. L.</au><au>Moseenkov, S. I.</au><au>Dudina, D. V.</au><au>Lomovsky, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes</atitle><jtitle>Bulletin of the Russian Academy of Sciences. Physics</jtitle><stitle>Bull. Russ. Acad. Sci. Phys</stitle><date>2013-02</date><risdate>2013</risdate><volume>77</volume><issue>2</issue><spage>162</spage><epage>165</epage><pages>162-165</pages><issn>1062-8738</issn><eissn>1934-9432</eissn><abstract>The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (∼20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (∼10 nm) exhibit thermal stability of structural defects up to 500°C.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1062873813020329</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1062-8738 |
ispartof | Bulletin of the Russian Academy of Sciences. Physics, 2013-02, Vol.77 (2), p.162-165 |
issn | 1062-8738 1934-9432 |
language | eng |
recordid | cdi_proquest_journals_1931173802 |
source | Springer Link |
subjects | Activation Activation analysis Aluminum Carbon Composite materials Defects Diffraction patterns Gas flow Hadrons Heavy Ions Multi wall carbon nanotubes Nanotubes Nuclear Physics Particulate composites Physics Physics and Astronomy Rare gases Synchrotron radiation Thermal stability X ray detectors X-ray diffraction X-rays |
title | Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20aluminum-carbon%20composites%20obtained%20via%20mechanical%20activation%20of%20aluminum%20and%20carbon%20nanotubes&rft.jtitle=Bulletin%20of%20the%20Russian%20Academy%20of%20Sciences.%20Physics&rft.au=Selyutin,%20A.%20G.&rft.date=2013-02&rft.volume=77&rft.issue=2&rft.spage=162&rft.epage=165&rft.pages=162-165&rft.issn=1062-8738&rft.eissn=1934-9432&rft_id=info:doi/10.3103/S1062873813020329&rft_dat=%3Cproquest_cross%3E1931173802%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931173802&rft_id=info:pmid/&rfr_iscdi=true |