Loading…

Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes

The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an i...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the Russian Academy of Sciences. Physics 2013-02, Vol.77 (2), p.162-165
Main Authors: Selyutin, A. G., Shmakov, A. N., Kuznetsov, V. L., Moseenkov, S. I., Dudina, D. V., Lomovsky, O. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663
cites cdi_FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663
container_end_page 165
container_issue 2
container_start_page 162
container_title Bulletin of the Russian Academy of Sciences. Physics
container_volume 77
creator Selyutin, A. G.
Shmakov, A. N.
Kuznetsov, V. L.
Moseenkov, S. I.
Dudina, D. V.
Lomovsky, O. I.
description The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (∼20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (∼10 nm) exhibit thermal stability of structural defects up to 500°C.
doi_str_mv 10.3103/S1062873813020329
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931173802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931173802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663</originalsourceid><addsrcrecordid>eNp1kE9LAzEQxYMoWKsfwFvA8-ok2d00Ryn-g4IH9bxMslmb0k1qslvQT29KexCKpxnmvfcbeIRcM7gVDMTdG4Oaz6SYMQEcBFcnZMKUKAtVCn6a9ywXO_2cXKS0AqgqxasJifMlRjSDje4HBxc8DR3F9dg7P_aFwajzyYR-E5IbbKJBD-i8benWIe2tWaJ3Btc0I9z2CEDRt_QA8ejDMGqbLslZh-tkrw5zSj4eH97nz8Xi9ellfr8oDFdSFRWvamwN8LJGCWhlhxXomkPJ8lEywbVpUTEtpWWmNBp0WSmjsZS6hboWU3Kz525i-BptGppVGKPPL5vcDGO5DODZxfYuE0NK0XbNJroe43fDoNlV2xxVmzN8n0nZ6z9t_EP-N_QLivl8mg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931173802</pqid></control><display><type>article</type><title>Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes</title><source>Springer Link</source><creator>Selyutin, A. G. ; Shmakov, A. N. ; Kuznetsov, V. L. ; Moseenkov, S. I. ; Dudina, D. V. ; Lomovsky, O. I.</creator><creatorcontrib>Selyutin, A. G. ; Shmakov, A. N. ; Kuznetsov, V. L. ; Moseenkov, S. I. ; Dudina, D. V. ; Lomovsky, O. I.</creatorcontrib><description>The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (∼20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (∼10 nm) exhibit thermal stability of structural defects up to 500°C.</description><identifier>ISSN: 1062-8738</identifier><identifier>EISSN: 1934-9432</identifier><identifier>DOI: 10.3103/S1062873813020329</identifier><language>eng</language><publisher>Heidelberg: Allerton Press, Inc</publisher><subject>Activation ; Activation analysis ; Aluminum ; Carbon ; Composite materials ; Defects ; Diffraction patterns ; Gas flow ; Hadrons ; Heavy Ions ; Multi wall carbon nanotubes ; Nanotubes ; Nuclear Physics ; Particulate composites ; Physics ; Physics and Astronomy ; Rare gases ; Synchrotron radiation ; Thermal stability ; X ray detectors ; X-ray diffraction ; X-rays</subject><ispartof>Bulletin of the Russian Academy of Sciences. Physics, 2013-02, Vol.77 (2), p.162-165</ispartof><rights>Allerton Press, Inc. 2013</rights><rights>Bulletin of the Russian Academy of Sciences: Physics is a copyright of Springer, 2013.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663</citedby><cites>FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Selyutin, A. G.</creatorcontrib><creatorcontrib>Shmakov, A. N.</creatorcontrib><creatorcontrib>Kuznetsov, V. L.</creatorcontrib><creatorcontrib>Moseenkov, S. I.</creatorcontrib><creatorcontrib>Dudina, D. V.</creatorcontrib><creatorcontrib>Lomovsky, O. I.</creatorcontrib><title>Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes</title><title>Bulletin of the Russian Academy of Sciences. Physics</title><addtitle>Bull. Russ. Acad. Sci. Phys</addtitle><description>The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (∼20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (∼10 nm) exhibit thermal stability of structural defects up to 500°C.</description><subject>Activation</subject><subject>Activation analysis</subject><subject>Aluminum</subject><subject>Carbon</subject><subject>Composite materials</subject><subject>Defects</subject><subject>Diffraction patterns</subject><subject>Gas flow</subject><subject>Hadrons</subject><subject>Heavy Ions</subject><subject>Multi wall carbon nanotubes</subject><subject>Nanotubes</subject><subject>Nuclear Physics</subject><subject>Particulate composites</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Rare gases</subject><subject>Synchrotron radiation</subject><subject>Thermal stability</subject><subject>X ray detectors</subject><subject>X-ray diffraction</subject><subject>X-rays</subject><issn>1062-8738</issn><issn>1934-9432</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LAzEQxYMoWKsfwFvA8-ok2d00Ryn-g4IH9bxMslmb0k1qslvQT29KexCKpxnmvfcbeIRcM7gVDMTdG4Oaz6SYMQEcBFcnZMKUKAtVCn6a9ywXO_2cXKS0AqgqxasJifMlRjSDje4HBxc8DR3F9dg7P_aFwajzyYR-E5IbbKJBD-i8benWIe2tWaJ3Btc0I9z2CEDRt_QA8ejDMGqbLslZh-tkrw5zSj4eH97nz8Xi9ellfr8oDFdSFRWvamwN8LJGCWhlhxXomkPJ8lEywbVpUTEtpWWmNBp0WSmjsZS6hboWU3Kz525i-BptGppVGKPPL5vcDGO5DODZxfYuE0NK0XbNJroe43fDoNlV2xxVmzN8n0nZ6z9t_EP-N_QLivl8mg</recordid><startdate>201302</startdate><enddate>201302</enddate><creator>Selyutin, A. G.</creator><creator>Shmakov, A. N.</creator><creator>Kuznetsov, V. L.</creator><creator>Moseenkov, S. I.</creator><creator>Dudina, D. V.</creator><creator>Lomovsky, O. I.</creator><general>Allerton Press, Inc</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope></search><sort><creationdate>201302</creationdate><title>Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes</title><author>Selyutin, A. G. ; Shmakov, A. N. ; Kuznetsov, V. L. ; Moseenkov, S. I. ; Dudina, D. V. ; Lomovsky, O. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Activation</topic><topic>Activation analysis</topic><topic>Aluminum</topic><topic>Carbon</topic><topic>Composite materials</topic><topic>Defects</topic><topic>Diffraction patterns</topic><topic>Gas flow</topic><topic>Hadrons</topic><topic>Heavy Ions</topic><topic>Multi wall carbon nanotubes</topic><topic>Nanotubes</topic><topic>Nuclear Physics</topic><topic>Particulate composites</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Rare gases</topic><topic>Synchrotron radiation</topic><topic>Thermal stability</topic><topic>X ray detectors</topic><topic>X-ray diffraction</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Selyutin, A. G.</creatorcontrib><creatorcontrib>Shmakov, A. N.</creatorcontrib><creatorcontrib>Kuznetsov, V. L.</creatorcontrib><creatorcontrib>Moseenkov, S. I.</creatorcontrib><creatorcontrib>Dudina, D. V.</creatorcontrib><creatorcontrib>Lomovsky, O. I.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Bulletin of the Russian Academy of Sciences. Physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Selyutin, A. G.</au><au>Shmakov, A. N.</au><au>Kuznetsov, V. L.</au><au>Moseenkov, S. I.</au><au>Dudina, D. V.</au><au>Lomovsky, O. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes</atitle><jtitle>Bulletin of the Russian Academy of Sciences. Physics</jtitle><stitle>Bull. Russ. Acad. Sci. Phys</stitle><date>2013-02</date><risdate>2013</risdate><volume>77</volume><issue>2</issue><spage>162</spage><epage>165</epage><pages>162-165</pages><issn>1062-8738</issn><eissn>1934-9432</eissn><abstract>The relaxation of structural defects of aluminum-multiwall carbon nanotubes (MWCNT) composite materials obtained via mechanical activation is studied in situ by X-ray diffraction using synchrotron radiation. Mechanically activated Al-MWCNT mixtures are annealed at temperatures of up to 600°C in an inert gas flow and X-ray diffraction patterns are simultaneously registered with a position-sensitive X-ray detector. It is demonstrated that mechanically activated samples of pure Al and composites with large-diameter MWCNTs (∼20 nm) begin to experience the relaxation of defects accumulated during mechanical activation at temperatures as low as 100–150°C, while samples with small-diameter MWCNTs (∼10 nm) exhibit thermal stability of structural defects up to 500°C.</abstract><cop>Heidelberg</cop><pub>Allerton Press, Inc</pub><doi>10.3103/S1062873813020329</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1062-8738
ispartof Bulletin of the Russian Academy of Sciences. Physics, 2013-02, Vol.77 (2), p.162-165
issn 1062-8738
1934-9432
language eng
recordid cdi_proquest_journals_1931173802
source Springer Link
subjects Activation
Activation analysis
Aluminum
Carbon
Composite materials
Defects
Diffraction patterns
Gas flow
Hadrons
Heavy Ions
Multi wall carbon nanotubes
Nanotubes
Nuclear Physics
Particulate composites
Physics
Physics and Astronomy
Rare gases
Synchrotron radiation
Thermal stability
X ray detectors
X-ray diffraction
X-rays
title Characterization of aluminum-carbon composites obtained via mechanical activation of aluminum and carbon nanotubes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T06%3A33%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Characterization%20of%20aluminum-carbon%20composites%20obtained%20via%20mechanical%20activation%20of%20aluminum%20and%20carbon%20nanotubes&rft.jtitle=Bulletin%20of%20the%20Russian%20Academy%20of%20Sciences.%20Physics&rft.au=Selyutin,%20A.%20G.&rft.date=2013-02&rft.volume=77&rft.issue=2&rft.spage=162&rft.epage=165&rft.pages=162-165&rft.issn=1062-8738&rft.eissn=1934-9432&rft_id=info:doi/10.3103/S1062873813020329&rft_dat=%3Cproquest_cross%3E1931173802%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2979-5256adc0246a70ae7fa50b62041c027132bcda91b77e1c4cb0b459cba47bd0663%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931173802&rft_id=info:pmid/&rfr_iscdi=true