Loading…
On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems
In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of r -invexity with respect to a convex compact set is introduced. Several conditions for quasidiff...
Saved in:
Published in: | Computational & applied mathematics 2017-09, Vol.36 (3), p.1299-1314 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3 |
container_end_page | 1314 |
container_issue | 3 |
container_start_page | 1299 |
container_title | Computational & applied mathematics |
container_volume | 36 |
creator | Antczak, T. |
description | In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of
r
-invexity with respect to a convex compact set is introduced. Several conditions for quasidifferentiable
r
-invexity with respect to a convex compact set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir duality results are established for the considered nonconvex quasidifferentiable optimization problem under assumption that the functions constituting it are
r
-invex with respect to the same function
η
and with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth extremum problems, the Lagrange multipliers may not be constant. |
doi_str_mv | 10.1007/s40314-015-0283-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931261933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931261933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouOh-AG8Bz9FJ0jbtURb_wcJe9BzSZiJZuulu0orrpzdLPXhxDjMwvPeG-RFyw-GOA6j7VIDkBQNeMhC1ZOqMLHgNioEEcU4WwIGzWkB5SZYpbSFXAcBFtSBhE-iwH_3O9H480m4I1o9-CImaYKmd5nXENPVjoj5QQ7vepEQHR8MQsv4Tv-hhMslb7xxGDKM3bY9zqv82pzS6j0Pe7dI1uXCmT7j8nVfk_enxbfXC1pvn19XDmnWybEZWG7RWyq4yssJaCiVU2xjXNa1Fx4VwWKAtQXQ1b1DZsm2FM6qWKFBUApy8Irdzbj58mDCNejtMMeSTmjcyf567zCo-q7o4pBTR6X3MJOJRc9AnsnomqzNZfSKrVfaI2ZOyNnxg_JP8r-kHWzh-VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931261933</pqid></control><display><type>article</type><title>On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems</title><source>Springer Link</source><creator>Antczak, T.</creator><creatorcontrib>Antczak, T.</creatorcontrib><description>In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of
r
-invexity with respect to a convex compact set is introduced. Several conditions for quasidifferentiable
r
-invexity with respect to a convex compact set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir duality results are established for the considered nonconvex quasidifferentiable optimization problem under assumption that the functions constituting it are
r
-invex with respect to the same function
η
and with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth extremum problems, the Lagrange multipliers may not be constant.</description><identifier>ISSN: 0101-8205</identifier><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-015-0283-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Convexity ; Lagrange multiplier ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Optimization</subject><ispartof>Computational & applied mathematics, 2017-09, Vol.36 (3), p.1299-1314</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3</citedby><cites>FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Antczak, T.</creatorcontrib><title>On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems</title><title>Computational & applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of
r
-invexity with respect to a convex compact set is introduced. Several conditions for quasidifferentiable
r
-invexity with respect to a convex compact set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir duality results are established for the considered nonconvex quasidifferentiable optimization problem under assumption that the functions constituting it are
r
-invex with respect to the same function
η
and with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth extremum problems, the Lagrange multipliers may not be constant.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convexity</subject><subject>Lagrange multiplier</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><issn>0101-8205</issn><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouOh-AG8Bz9FJ0jbtURb_wcJe9BzSZiJZuulu0orrpzdLPXhxDjMwvPeG-RFyw-GOA6j7VIDkBQNeMhC1ZOqMLHgNioEEcU4WwIGzWkB5SZYpbSFXAcBFtSBhE-iwH_3O9H480m4I1o9-CImaYKmd5nXENPVjoj5QQ7vepEQHR8MQsv4Tv-hhMslb7xxGDKM3bY9zqv82pzS6j0Pe7dI1uXCmT7j8nVfk_enxbfXC1pvn19XDmnWybEZWG7RWyq4yssJaCiVU2xjXNa1Fx4VwWKAtQXQ1b1DZsm2FM6qWKFBUApy8Irdzbj58mDCNejtMMeSTmjcyf567zCo-q7o4pBTR6X3MJOJRc9AnsnomqzNZfSKrVfaI2ZOyNnxg_JP8r-kHWzh-VA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Antczak, T.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems</title><author>Antczak, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convexity</topic><topic>Lagrange multiplier</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antczak, T.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><jtitle>Computational & applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antczak, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems</atitle><jtitle>Computational & applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>36</volume><issue>3</issue><spage>1299</spage><epage>1314</epage><pages>1299-1314</pages><issn>0101-8205</issn><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of
r
-invexity with respect to a convex compact set is introduced. Several conditions for quasidifferentiable
r
-invexity with respect to a convex compact set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir duality results are established for the considered nonconvex quasidifferentiable optimization problem under assumption that the functions constituting it are
r
-invex with respect to the same function
η
and with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth extremum problems, the Lagrange multipliers may not be constant.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-015-0283-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0101-8205 |
ispartof | Computational & applied mathematics, 2017-09, Vol.36 (3), p.1299-1314 |
issn | 0101-8205 2238-3603 1807-0302 |
language | eng |
recordid | cdi_proquest_journals_1931261933 |
source | Springer Link |
subjects | Applications of Mathematics Applied physics Computational mathematics Computational Mathematics and Numerical Analysis Convexity Lagrange multiplier Mathematical Applications in Computer Science Mathematical Applications in the Physical Sciences Mathematical programming Mathematics Mathematics and Statistics Nonlinear programming Optimization |
title | On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20optimality%20conditions%20and%20duality%20results%20in%20a%20class%20of%20nonconvex%20quasidifferentiable%20optimization%20problems&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Antczak,%20T.&rft.date=2017-09-01&rft.volume=36&rft.issue=3&rft.spage=1299&rft.epage=1314&rft.pages=1299-1314&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-015-0283-7&rft_dat=%3Cproquest_cross%3E1931261933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931261933&rft_id=info:pmid/&rfr_iscdi=true |