Loading…

On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems

In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of r -invexity with respect to a convex compact set is introduced. Several conditions for quasidiff...

Full description

Saved in:
Bibliographic Details
Published in:Computational & applied mathematics 2017-09, Vol.36 (3), p.1299-1314
Main Author: Antczak, T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3
cites cdi_FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3
container_end_page 1314
container_issue 3
container_start_page 1299
container_title Computational & applied mathematics
container_volume 36
creator Antczak, T.
description In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of r -invexity with respect to a convex compact set is introduced. Several conditions for quasidifferentiable r -invexity with respect to a convex compact set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir duality results are established for the considered nonconvex quasidifferentiable optimization problem under assumption that the functions constituting it are r -invex with respect to the same function η and with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth extremum problems, the Lagrange multipliers may not be constant.
doi_str_mv 10.1007/s40314-015-0283-7
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931261933</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931261933</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouOh-AG8Bz9FJ0jbtURb_wcJe9BzSZiJZuulu0orrpzdLPXhxDjMwvPeG-RFyw-GOA6j7VIDkBQNeMhC1ZOqMLHgNioEEcU4WwIGzWkB5SZYpbSFXAcBFtSBhE-iwH_3O9H480m4I1o9-CImaYKmd5nXENPVjoj5QQ7vepEQHR8MQsv4Tv-hhMslb7xxGDKM3bY9zqv82pzS6j0Pe7dI1uXCmT7j8nVfk_enxbfXC1pvn19XDmnWybEZWG7RWyq4yssJaCiVU2xjXNa1Fx4VwWKAtQXQ1b1DZsm2FM6qWKFBUApy8Irdzbj58mDCNejtMMeSTmjcyf567zCo-q7o4pBTR6X3MJOJRc9AnsnomqzNZfSKrVfaI2ZOyNnxg_JP8r-kHWzh-VA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931261933</pqid></control><display><type>article</type><title>On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems</title><source>Springer Link</source><creator>Antczak, T.</creator><creatorcontrib>Antczak, T.</creatorcontrib><description>In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of r -invexity with respect to a convex compact set is introduced. Several conditions for quasidifferentiable r -invexity with respect to a convex compact set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir duality results are established for the considered nonconvex quasidifferentiable optimization problem under assumption that the functions constituting it are r -invex with respect to the same function η and with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth extremum problems, the Lagrange multipliers may not be constant.</description><identifier>ISSN: 0101-8205</identifier><identifier>ISSN: 2238-3603</identifier><identifier>EISSN: 1807-0302</identifier><identifier>DOI: 10.1007/s40314-015-0283-7</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Applications of Mathematics ; Applied physics ; Computational mathematics ; Computational Mathematics and Numerical Analysis ; Convexity ; Lagrange multiplier ; Mathematical Applications in Computer Science ; Mathematical Applications in the Physical Sciences ; Mathematical programming ; Mathematics ; Mathematics and Statistics ; Nonlinear programming ; Optimization</subject><ispartof>Computational &amp; applied mathematics, 2017-09, Vol.36 (3), p.1299-1314</ispartof><rights>The Author(s) 2015</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3</citedby><cites>FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Antczak, T.</creatorcontrib><title>On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems</title><title>Computational &amp; applied mathematics</title><addtitle>Comp. Appl. Math</addtitle><description>In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of r -invexity with respect to a convex compact set is introduced. Several conditions for quasidifferentiable r -invexity with respect to a convex compact set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir duality results are established for the considered nonconvex quasidifferentiable optimization problem under assumption that the functions constituting it are r -invex with respect to the same function η and with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth extremum problems, the Lagrange multipliers may not be constant.</description><subject>Applications of Mathematics</subject><subject>Applied physics</subject><subject>Computational mathematics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Convexity</subject><subject>Lagrange multiplier</subject><subject>Mathematical Applications in Computer Science</subject><subject>Mathematical Applications in the Physical Sciences</subject><subject>Mathematical programming</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><issn>0101-8205</issn><issn>2238-3603</issn><issn>1807-0302</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouOh-AG8Bz9FJ0jbtURb_wcJe9BzSZiJZuulu0orrpzdLPXhxDjMwvPeG-RFyw-GOA6j7VIDkBQNeMhC1ZOqMLHgNioEEcU4WwIGzWkB5SZYpbSFXAcBFtSBhE-iwH_3O9H480m4I1o9-CImaYKmd5nXENPVjoj5QQ7vepEQHR8MQsv4Tv-hhMslb7xxGDKM3bY9zqv82pzS6j0Pe7dI1uXCmT7j8nVfk_enxbfXC1pvn19XDmnWybEZWG7RWyq4yssJaCiVU2xjXNa1Fx4VwWKAtQXQ1b1DZsm2FM6qWKFBUApy8Irdzbj58mDCNejtMMeSTmjcyf567zCo-q7o4pBTR6X3MJOJRc9AnsnomqzNZfSKrVfaI2ZOyNnxg_JP8r-kHWzh-VA</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Antczak, T.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20170901</creationdate><title>On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems</title><author>Antczak, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applications of Mathematics</topic><topic>Applied physics</topic><topic>Computational mathematics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Convexity</topic><topic>Lagrange multiplier</topic><topic>Mathematical Applications in Computer Science</topic><topic>Mathematical Applications in the Physical Sciences</topic><topic>Mathematical programming</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Antczak, T.</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><jtitle>Computational &amp; applied mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Antczak, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems</atitle><jtitle>Computational &amp; applied mathematics</jtitle><stitle>Comp. Appl. Math</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>36</volume><issue>3</issue><spage>1299</spage><epage>1314</epage><pages>1299-1314</pages><issn>0101-8205</issn><issn>2238-3603</issn><eissn>1807-0302</eissn><abstract>In the paper, the class of nonconvex nonsmooth optimization problems with the quasidifferentiable functions is considered. Further, a new notion of nonsmooth generalized convexity, namely, the concept of r -invexity with respect to a convex compact set is introduced. Several conditions for quasidifferentiable r -invexity with respect to a convex compact set are given. Furthermore, the sufficient optimality conditions and several Mond–Weir duality results are established for the considered nonconvex quasidifferentiable optimization problem under assumption that the functions constituting it are r -invex with respect to the same function η and with respect to convex compact sets which are equal to Minkowski sum of their subdifferentials and superdifferentials. It is also illustrated that, for such nonsmooth extremum problems, the Lagrange multipliers may not be constant.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s40314-015-0283-7</doi><tpages>16</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0101-8205
ispartof Computational & applied mathematics, 2017-09, Vol.36 (3), p.1299-1314
issn 0101-8205
2238-3603
1807-0302
language eng
recordid cdi_proquest_journals_1931261933
source Springer Link
subjects Applications of Mathematics
Applied physics
Computational mathematics
Computational Mathematics and Numerical Analysis
Convexity
Lagrange multiplier
Mathematical Applications in Computer Science
Mathematical Applications in the Physical Sciences
Mathematical programming
Mathematics
Mathematics and Statistics
Nonlinear programming
Optimization
title On optimality conditions and duality results in a class of nonconvex quasidifferentiable optimization problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T04%3A49%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20optimality%20conditions%20and%20duality%20results%20in%20a%20class%20of%20nonconvex%20quasidifferentiable%20optimization%20problems&rft.jtitle=Computational%20&%20applied%20mathematics&rft.au=Antczak,%20T.&rft.date=2017-09-01&rft.volume=36&rft.issue=3&rft.spage=1299&rft.epage=1314&rft.pages=1299-1314&rft.issn=0101-8205&rft.eissn=1807-0302&rft_id=info:doi/10.1007/s40314-015-0283-7&rft_dat=%3Cproquest_cross%3E1931261933%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-8aedd33c6a36e832727b9afc9bdef122fe4ed502c819e7d5bb2fa783e2e2620f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931261933&rft_id=info:pmid/&rfr_iscdi=true