Loading…

Multiscale correlation networks analysis of the US stock market: a wavelet analysis

We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of economic interaction and coordination 2017-10, Vol.12 (3), p.561-594
Main Authors: Wang, Gang-Jin, Xie, Chi, Chen, Shou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493
cites cdi_FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493
container_end_page 594
container_issue 3
container_start_page 561
container_title Journal of economic interaction and coordination
container_volume 12
creator Wang, Gang-Jin
Xie, Chi
Chen, Shou
description We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet analysis and topological methods of minimum spanning tree (MST) and planar maximally filtered graph (PMFG). Using these techniques, we construct MST and PMFG networks of the US stock market at different time scales. The key empirical results show that (1) the topological structures and properties of networks vary across time horizons, (2) there is a sectoral clustering effect in the networks at small time scales, and (3) only a part of connections in the networks survives from one time scale to the next. Our results in terms of MSTs and PMFGs for different time scales supply a new perspective for participants in financial markets, especially for investors or hedgers who have different investment or hedging horizons.
doi_str_mv 10.1007/s11403-016-0176-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931552059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931552059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA59VMkt3sepPiF1Q8tIK3kKazunbd1CS17b83ZaV48TDMHJ53eHkIOQd2CYypqwAgmcgYFGlUkW2PyADKgmUKeHl8uOH1lIxCaOZMAC-EkmpApk_rNjbBmhapdd5ja2LjOtph3Di_DNR0pt2FJlBX0_iO9GVKQ3R2ST-NX2K8poZuzDe2GA_oGTmpTRtw9LuHZHZ3Oxs_ZJPn-8fxzSSzEmTMAGuc4yJVX4C1XJaFMbyyrMpLJUDVQsqcC1PwWjFjSuA1FgwqZWxlUFZiSC76tyvvvtYYov5wa586BA2VgDznLN9T0FPWuxA81nrlm9R9p4HpvT3d29PJnt7b09uU4X0mJLZ7Q__n87-hHxLBct0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931552059</pqid></control><display><type>article</type><title>Multiscale correlation networks analysis of the US stock market: a wavelet analysis</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Wang, Gang-Jin ; Xie, Chi ; Chen, Shou</creator><creatorcontrib>Wang, Gang-Jin ; Xie, Chi ; Chen, Shou</creatorcontrib><description>We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet analysis and topological methods of minimum spanning tree (MST) and planar maximally filtered graph (PMFG). Using these techniques, we construct MST and PMFG networks of the US stock market at different time scales. The key empirical results show that (1) the topological structures and properties of networks vary across time horizons, (2) there is a sectoral clustering effect in the networks at small time scales, and (3) only a part of connections in the networks survives from one time scale to the next. Our results in terms of MSTs and PMFGs for different time scales supply a new perspective for participants in financial markets, especially for investors or hedgers who have different investment or hedging horizons.</description><identifier>ISSN: 1860-711X</identifier><identifier>EISSN: 1860-7128</identifier><identifier>DOI: 10.1007/s11403-016-0176-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Appl. in Social and Behavioral Sciences ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Finance ; Mathematical and Computational Physics ; Regular Article ; Securities markets ; Theoretical ; Wavelet transforms</subject><ispartof>Journal of economic interaction and coordination, 2017-10, Vol.12 (3), p.561-594</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Journal of Economic Interaction and Coordination is a copyright of Springer, 2017.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493</citedby><cites>FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493</cites><orcidid>0000-0003-3862-0224 ; 0000-0002-2813-4356 ; 0000-0002-7601-5351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1931552059/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1931552059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Wang, Gang-Jin</creatorcontrib><creatorcontrib>Xie, Chi</creatorcontrib><creatorcontrib>Chen, Shou</creatorcontrib><title>Multiscale correlation networks analysis of the US stock market: a wavelet analysis</title><title>Journal of economic interaction and coordination</title><addtitle>J Econ Interact Coord</addtitle><description>We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet analysis and topological methods of minimum spanning tree (MST) and planar maximally filtered graph (PMFG). Using these techniques, we construct MST and PMFG networks of the US stock market at different time scales. The key empirical results show that (1) the topological structures and properties of networks vary across time horizons, (2) there is a sectoral clustering effect in the networks at small time scales, and (3) only a part of connections in the networks survives from one time scale to the next. Our results in terms of MSTs and PMFGs for different time scales supply a new perspective for participants in financial markets, especially for investors or hedgers who have different investment or hedging horizons.</description><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Mathematical and Computational Physics</subject><subject>Regular Article</subject><subject>Securities markets</subject><subject>Theoretical</subject><subject>Wavelet transforms</subject><issn>1860-711X</issn><issn>1860-7128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LAzEQhoMoWGp_gLeA59VMkt3sepPiF1Q8tIK3kKazunbd1CS17b83ZaV48TDMHJ53eHkIOQd2CYypqwAgmcgYFGlUkW2PyADKgmUKeHl8uOH1lIxCaOZMAC-EkmpApk_rNjbBmhapdd5ja2LjOtph3Di_DNR0pt2FJlBX0_iO9GVKQ3R2ST-NX2K8poZuzDe2GA_oGTmpTRtw9LuHZHZ3Oxs_ZJPn-8fxzSSzEmTMAGuc4yJVX4C1XJaFMbyyrMpLJUDVQsqcC1PwWjFjSuA1FgwqZWxlUFZiSC76tyvvvtYYov5wa586BA2VgDznLN9T0FPWuxA81nrlm9R9p4HpvT3d29PJnt7b09uU4X0mJLZ7Q__n87-hHxLBct0</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Wang, Gang-Jin</creator><creator>Xie, Chi</creator><creator>Chen, Shou</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3862-0224</orcidid><orcidid>https://orcid.org/0000-0002-2813-4356</orcidid><orcidid>https://orcid.org/0000-0002-7601-5351</orcidid></search><sort><creationdate>20171001</creationdate><title>Multiscale correlation networks analysis of the US stock market: a wavelet analysis</title><author>Wang, Gang-Jin ; Xie, Chi ; Chen, Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Mathematical and Computational Physics</topic><topic>Regular Article</topic><topic>Securities markets</topic><topic>Theoretical</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang-Jin</creatorcontrib><creatorcontrib>Xie, Chi</creatorcontrib><creatorcontrib>Chen, Shou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of economic interaction and coordination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang-Jin</au><au>Xie, Chi</au><au>Chen, Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale correlation networks analysis of the US stock market: a wavelet analysis</atitle><jtitle>Journal of economic interaction and coordination</jtitle><stitle>J Econ Interact Coord</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>561</spage><epage>594</epage><pages>561-594</pages><issn>1860-711X</issn><eissn>1860-7128</eissn><abstract>We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet analysis and topological methods of minimum spanning tree (MST) and planar maximally filtered graph (PMFG). Using these techniques, we construct MST and PMFG networks of the US stock market at different time scales. The key empirical results show that (1) the topological structures and properties of networks vary across time horizons, (2) there is a sectoral clustering effect in the networks at small time scales, and (3) only a part of connections in the networks survives from one time scale to the next. Our results in terms of MSTs and PMFGs for different time scales supply a new perspective for participants in financial markets, especially for investors or hedgers who have different investment or hedging horizons.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11403-016-0176-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-3862-0224</orcidid><orcidid>https://orcid.org/0000-0002-2813-4356</orcidid><orcidid>https://orcid.org/0000-0002-7601-5351</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1860-711X
ispartof Journal of economic interaction and coordination, 2017-10, Vol.12 (3), p.561-594
issn 1860-711X
1860-7128
language eng
recordid cdi_proquest_journals_1931552059
source ABI/INFORM Global (ProQuest); Springer Link
subjects Computer Appl. in Social and Behavioral Sciences
Economic theory
Economic Theory/Quantitative Economics/Mathematical Methods
Economics
Economics and Finance
Finance
Mathematical and Computational Physics
Regular Article
Securities markets
Theoretical
Wavelet transforms
title Multiscale correlation networks analysis of the US stock market: a wavelet analysis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20correlation%20networks%20analysis%20of%20the%20US%20stock%20market:%20a%20wavelet%20analysis&rft.jtitle=Journal%20of%20economic%20interaction%20and%20coordination&rft.au=Wang,%20Gang-Jin&rft.date=2017-10-01&rft.volume=12&rft.issue=3&rft.spage=561&rft.epage=594&rft.pages=561-594&rft.issn=1860-711X&rft.eissn=1860-7128&rft_id=info:doi/10.1007/s11403-016-0176-x&rft_dat=%3Cproquest_cross%3E1931552059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931552059&rft_id=info:pmid/&rfr_iscdi=true