Loading…
Multiscale correlation networks analysis of the US stock market: a wavelet analysis
We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet a...
Saved in:
Published in: | Journal of economic interaction and coordination 2017-10, Vol.12 (3), p.561-594 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493 |
---|---|
cites | cdi_FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493 |
container_end_page | 594 |
container_issue | 3 |
container_start_page | 561 |
container_title | Journal of economic interaction and coordination |
container_volume | 12 |
creator | Wang, Gang-Jin Xie, Chi Chen, Shou |
description | We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet analysis and topological methods of minimum spanning tree (MST) and planar maximally filtered graph (PMFG). Using these techniques, we construct MST and PMFG networks of the US stock market at different time scales. The key empirical results show that (1) the topological structures and properties of networks vary across time horizons, (2) there is a sectoral clustering effect in the networks at small time scales, and (3) only a part of connections in the networks survives from one time scale to the next. Our results in terms of MSTs and PMFGs for different time scales supply a new perspective for participants in financial markets, especially for investors or hedgers who have different investment or hedging horizons. |
doi_str_mv | 10.1007/s11403-016-0176-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931552059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1931552059</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWGp_gLeA59VMkt3sepPiF1Q8tIK3kKazunbd1CS17b83ZaV48TDMHJ53eHkIOQd2CYypqwAgmcgYFGlUkW2PyADKgmUKeHl8uOH1lIxCaOZMAC-EkmpApk_rNjbBmhapdd5ja2LjOtph3Di_DNR0pt2FJlBX0_iO9GVKQ3R2ST-NX2K8poZuzDe2GA_oGTmpTRtw9LuHZHZ3Oxs_ZJPn-8fxzSSzEmTMAGuc4yJVX4C1XJaFMbyyrMpLJUDVQsqcC1PwWjFjSuA1FgwqZWxlUFZiSC76tyvvvtYYov5wa586BA2VgDznLN9T0FPWuxA81nrlm9R9p4HpvT3d29PJnt7b09uU4X0mJLZ7Q__n87-hHxLBct0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931552059</pqid></control><display><type>article</type><title>Multiscale correlation networks analysis of the US stock market: a wavelet analysis</title><source>ABI/INFORM Global (ProQuest)</source><source>Springer Link</source><creator>Wang, Gang-Jin ; Xie, Chi ; Chen, Shou</creator><creatorcontrib>Wang, Gang-Jin ; Xie, Chi ; Chen, Shou</creatorcontrib><description>We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet analysis and topological methods of minimum spanning tree (MST) and planar maximally filtered graph (PMFG). Using these techniques, we construct MST and PMFG networks of the US stock market at different time scales. The key empirical results show that (1) the topological structures and properties of networks vary across time horizons, (2) there is a sectoral clustering effect in the networks at small time scales, and (3) only a part of connections in the networks survives from one time scale to the next. Our results in terms of MSTs and PMFGs for different time scales supply a new perspective for participants in financial markets, especially for investors or hedgers who have different investment or hedging horizons.</description><identifier>ISSN: 1860-711X</identifier><identifier>EISSN: 1860-7128</identifier><identifier>DOI: 10.1007/s11403-016-0176-x</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Computer Appl. in Social and Behavioral Sciences ; Economic theory ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Finance ; Mathematical and Computational Physics ; Regular Article ; Securities markets ; Theoretical ; Wavelet transforms</subject><ispartof>Journal of economic interaction and coordination, 2017-10, Vol.12 (3), p.561-594</ispartof><rights>Springer-Verlag Berlin Heidelberg 2016</rights><rights>Journal of Economic Interaction and Coordination is a copyright of Springer, 2017.</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493</citedby><cites>FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493</cites><orcidid>0000-0003-3862-0224 ; 0000-0002-2813-4356 ; 0000-0002-7601-5351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1931552059/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1931552059?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,44363,74895</link.rule.ids></links><search><creatorcontrib>Wang, Gang-Jin</creatorcontrib><creatorcontrib>Xie, Chi</creatorcontrib><creatorcontrib>Chen, Shou</creatorcontrib><title>Multiscale correlation networks analysis of the US stock market: a wavelet analysis</title><title>Journal of economic interaction and coordination</title><addtitle>J Econ Interact Coord</addtitle><description>We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet analysis and topological methods of minimum spanning tree (MST) and planar maximally filtered graph (PMFG). Using these techniques, we construct MST and PMFG networks of the US stock market at different time scales. The key empirical results show that (1) the topological structures and properties of networks vary across time horizons, (2) there is a sectoral clustering effect in the networks at small time scales, and (3) only a part of connections in the networks survives from one time scale to the next. Our results in terms of MSTs and PMFGs for different time scales supply a new perspective for participants in financial markets, especially for investors or hedgers who have different investment or hedging horizons.</description><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Economic theory</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Finance</subject><subject>Mathematical and Computational Physics</subject><subject>Regular Article</subject><subject>Securities markets</subject><subject>Theoretical</subject><subject>Wavelet transforms</subject><issn>1860-711X</issn><issn>1860-7128</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNp1kE1LAzEQhoMoWGp_gLeA59VMkt3sepPiF1Q8tIK3kKazunbd1CS17b83ZaV48TDMHJ53eHkIOQd2CYypqwAgmcgYFGlUkW2PyADKgmUKeHl8uOH1lIxCaOZMAC-EkmpApk_rNjbBmhapdd5ja2LjOtph3Di_DNR0pt2FJlBX0_iO9GVKQ3R2ST-NX2K8poZuzDe2GA_oGTmpTRtw9LuHZHZ3Oxs_ZJPn-8fxzSSzEmTMAGuc4yJVX4C1XJaFMbyyrMpLJUDVQsqcC1PwWjFjSuA1FgwqZWxlUFZiSC76tyvvvtYYov5wa586BA2VgDznLN9T0FPWuxA81nrlm9R9p4HpvT3d29PJnt7b09uU4X0mJLZ7Q__n87-hHxLBct0</recordid><startdate>20171001</startdate><enddate>20171001</enddate><creator>Wang, Gang-Jin</creator><creator>Xie, Chi</creator><creator>Chen, Shou</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>K60</scope><scope>K6~</scope><scope>L.-</scope><scope>M0C</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-3862-0224</orcidid><orcidid>https://orcid.org/0000-0002-2813-4356</orcidid><orcidid>https://orcid.org/0000-0002-7601-5351</orcidid></search><sort><creationdate>20171001</creationdate><title>Multiscale correlation networks analysis of the US stock market: a wavelet analysis</title><author>Wang, Gang-Jin ; Xie, Chi ; Chen, Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Economic theory</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Finance</topic><topic>Mathematical and Computational Physics</topic><topic>Regular Article</topic><topic>Securities markets</topic><topic>Theoretical</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Gang-Jin</creatorcontrib><creatorcontrib>Xie, Chi</creatorcontrib><creatorcontrib>Chen, Shou</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global (ProQuest)</collection><collection>One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><jtitle>Journal of economic interaction and coordination</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Gang-Jin</au><au>Xie, Chi</au><au>Chen, Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiscale correlation networks analysis of the US stock market: a wavelet analysis</atitle><jtitle>Journal of economic interaction and coordination</jtitle><stitle>J Econ Interact Coord</stitle><date>2017-10-01</date><risdate>2017</risdate><volume>12</volume><issue>3</issue><spage>561</spage><epage>594</epage><pages>561-594</pages><issn>1860-711X</issn><eissn>1860-7128</eissn><abstract>We investigate the interaction among stocks in the US market over various time horizons from a network perspective. Unlike the high-frequency data-driven multiscale correlation networks used in previous works, we propose method-driven multiscale correlation networks that are constructed by wavelet analysis and topological methods of minimum spanning tree (MST) and planar maximally filtered graph (PMFG). Using these techniques, we construct MST and PMFG networks of the US stock market at different time scales. The key empirical results show that (1) the topological structures and properties of networks vary across time horizons, (2) there is a sectoral clustering effect in the networks at small time scales, and (3) only a part of connections in the networks survives from one time scale to the next. Our results in terms of MSTs and PMFGs for different time scales supply a new perspective for participants in financial markets, especially for investors or hedgers who have different investment or hedging horizons.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s11403-016-0176-x</doi><tpages>34</tpages><orcidid>https://orcid.org/0000-0003-3862-0224</orcidid><orcidid>https://orcid.org/0000-0002-2813-4356</orcidid><orcidid>https://orcid.org/0000-0002-7601-5351</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-711X |
ispartof | Journal of economic interaction and coordination, 2017-10, Vol.12 (3), p.561-594 |
issn | 1860-711X 1860-7128 |
language | eng |
recordid | cdi_proquest_journals_1931552059 |
source | ABI/INFORM Global (ProQuest); Springer Link |
subjects | Computer Appl. in Social and Behavioral Sciences Economic theory Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Finance Mathematical and Computational Physics Regular Article Securities markets Theoretical Wavelet transforms |
title | Multiscale correlation networks analysis of the US stock market: a wavelet analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A47%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiscale%20correlation%20networks%20analysis%20of%20the%20US%20stock%20market:%20a%20wavelet%20analysis&rft.jtitle=Journal%20of%20economic%20interaction%20and%20coordination&rft.au=Wang,%20Gang-Jin&rft.date=2017-10-01&rft.volume=12&rft.issue=3&rft.spage=561&rft.epage=594&rft.pages=561-594&rft.issn=1860-711X&rft.eissn=1860-7128&rft_id=info:doi/10.1007/s11403-016-0176-x&rft_dat=%3Cproquest_cross%3E1931552059%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-1efebed140d1cc2486aa29c09587317f344523a62f70aa812fe60197ac9ae493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931552059&rft_id=info:pmid/&rfr_iscdi=true |