Loading…
Fracture mechanism of a laminated aluminum alloy plate during ballistic impact
The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine...
Saved in:
Published in: | Rare metals 2017-09, Vol.36 (9), p.737-745 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3 |
container_end_page | 745 |
container_issue | 9 |
container_start_page | 737 |
container_title | Rare metals |
container_volume | 36 |
creator | Li, Ming-Yuan Xiong, Bai-Qing Wang, Guo-Jun Tong, You-Zhi Li, Xi-Wu Huang, Shu-Hui Li, Zhi-Hui Zhang, Yong-An |
description | The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure.Optical microscopy(OM),electron back-scattered diffraction(EBSD) and scanning electron microscopy(SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed.Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging.The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer,accounting for the asymmetry of damage. |
doi_str_mv | 10.1007/s12598-015-0684-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931554307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673226715</cqvip_id><sourcerecordid>1931554307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEuXxA7hZcA7s-u0jqiggVXCBs-WmTpsqr9rJof8eV6kQJ047Wu03o50su0N4RAD1FJEKo3NAkYPUPMezbIZaqlyhFudJA2AOguJldhXjDoBzKWGWfSyCK4YxeNL4YuvaKjakK4kjtWuq1g1-TVw9Jjk2SdTdgfR12pL1GKp2Q1ZpV8WhKkjV9MnoJrsoXR397WleZ9-Ll6_5W778fH2fPy_zgnE25M6AMZprZZACZUoirhwXymjhwHEUmjJOkcoSvDYFCqo8Syh45hhXjl1nD5NvH7r96ONgd90Y2hRp0TAUgjNQ6QqnqyJ0MQZf2j5UjQsHi2CPtdmpNptqs8faLCaGTkzsjx_68Mf5H-j-FLTt2s0-cb9JUjFKpULBfgA6jXkF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931554307</pqid></control><display><type>article</type><title>Fracture mechanism of a laminated aluminum alloy plate during ballistic impact</title><source>Springer Nature</source><creator>Li, Ming-Yuan ; Xiong, Bai-Qing ; Wang, Guo-Jun ; Tong, You-Zhi ; Li, Xi-Wu ; Huang, Shu-Hui ; Li, Zhi-Hui ; Zhang, Yong-An</creator><creatorcontrib>Li, Ming-Yuan ; Xiong, Bai-Qing ; Wang, Guo-Jun ; Tong, You-Zhi ; Li, Xi-Wu ; Huang, Shu-Hui ; Li, Zhi-Hui ; Zhang, Yong-An</creatorcontrib><description>The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure.Optical microscopy(OM),electron back-scattered diffraction(EBSD) and scanning electron microscopy(SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed.Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging.The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer,accounting for the asymmetry of damage.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-015-0684-1</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Adiabatic flow ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Biomaterials ; Chemistry and Materials Science ; Crack tips ; Craters ; Deflection ; Deformation mechanisms ; Delamination ; Ductile fracture ; Edge dislocations ; Electron backscatter diffraction ; Energy ; Fracture mechanics ; Fracture surfaces ; Materials Engineering ; Materials Science ; Metallic Materials ; Microstructure ; Nanoscale Science and Technology ; Optical data processing ; Optical microscopy ; Physical Chemistry ; Projectiles ; Scanning electron microscopy ; Shear bands ; Tips ; 光学显微镜 ; 冲击过程 ; 弹丸速度 ; 扫描电子显微镜 ; 断裂机理 ; 电子背散射衍射 ; 绝热剪切带 ; 铝合金板</subject><ispartof>Rare metals, 2017-09, Vol.36 (9), p.737-745</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Rare Metals is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3</citedby><cites>FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3</cites><orcidid>0000-0002-2173-990X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85314X/85314X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Ming-Yuan</creatorcontrib><creatorcontrib>Xiong, Bai-Qing</creatorcontrib><creatorcontrib>Wang, Guo-Jun</creatorcontrib><creatorcontrib>Tong, You-Zhi</creatorcontrib><creatorcontrib>Li, Xi-Wu</creatorcontrib><creatorcontrib>Huang, Shu-Hui</creatorcontrib><creatorcontrib>Li, Zhi-Hui</creatorcontrib><creatorcontrib>Zhang, Yong-An</creatorcontrib><title>Fracture mechanism of a laminated aluminum alloy plate during ballistic impact</title><title>Rare metals</title><addtitle>Rare Met</addtitle><addtitle>Rare Metals</addtitle><description>The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure.Optical microscopy(OM),electron back-scattered diffraction(EBSD) and scanning electron microscopy(SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed.Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging.The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer,accounting for the asymmetry of damage.</description><subject>Adiabatic flow</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Crack tips</subject><subject>Craters</subject><subject>Deflection</subject><subject>Deformation mechanisms</subject><subject>Delamination</subject><subject>Ductile fracture</subject><subject>Edge dislocations</subject><subject>Electron backscatter diffraction</subject><subject>Energy</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanoscale Science and Technology</subject><subject>Optical data processing</subject><subject>Optical microscopy</subject><subject>Physical Chemistry</subject><subject>Projectiles</subject><subject>Scanning electron microscopy</subject><subject>Shear bands</subject><subject>Tips</subject><subject>光学显微镜</subject><subject>冲击过程</subject><subject>弹丸速度</subject><subject>扫描电子显微镜</subject><subject>断裂机理</subject><subject>电子背散射衍射</subject><subject>绝热剪切带</subject><subject>铝合金板</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEuXxA7hZcA7s-u0jqiggVXCBs-WmTpsqr9rJof8eV6kQJ047Wu03o50su0N4RAD1FJEKo3NAkYPUPMezbIZaqlyhFudJA2AOguJldhXjDoBzKWGWfSyCK4YxeNL4YuvaKjakK4kjtWuq1g1-TVw9Jjk2SdTdgfR12pL1GKp2Q1ZpV8WhKkjV9MnoJrsoXR397WleZ9-Ll6_5W778fH2fPy_zgnE25M6AMZprZZACZUoirhwXymjhwHEUmjJOkcoSvDYFCqo8Syh45hhXjl1nD5NvH7r96ONgd90Y2hRp0TAUgjNQ6QqnqyJ0MQZf2j5UjQsHi2CPtdmpNptqs8faLCaGTkzsjx_68Mf5H-j-FLTt2s0-cb9JUjFKpULBfgA6jXkF</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Li, Ming-Yuan</creator><creator>Xiong, Bai-Qing</creator><creator>Wang, Guo-Jun</creator><creator>Tong, You-Zhi</creator><creator>Li, Xi-Wu</creator><creator>Huang, Shu-Hui</creator><creator>Li, Zhi-Hui</creator><creator>Zhang, Yong-An</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2173-990X</orcidid></search><sort><creationdate>20170901</creationdate><title>Fracture mechanism of a laminated aluminum alloy plate during ballistic impact</title><author>Li, Ming-Yuan ; Xiong, Bai-Qing ; Wang, Guo-Jun ; Tong, You-Zhi ; Li, Xi-Wu ; Huang, Shu-Hui ; Li, Zhi-Hui ; Zhang, Yong-An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adiabatic flow</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Crack tips</topic><topic>Craters</topic><topic>Deflection</topic><topic>Deformation mechanisms</topic><topic>Delamination</topic><topic>Ductile fracture</topic><topic>Edge dislocations</topic><topic>Electron backscatter diffraction</topic><topic>Energy</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanoscale Science and Technology</topic><topic>Optical data processing</topic><topic>Optical microscopy</topic><topic>Physical Chemistry</topic><topic>Projectiles</topic><topic>Scanning electron microscopy</topic><topic>Shear bands</topic><topic>Tips</topic><topic>光学显微镜</topic><topic>冲击过程</topic><topic>弹丸速度</topic><topic>扫描电子显微镜</topic><topic>断裂机理</topic><topic>电子背散射衍射</topic><topic>绝热剪切带</topic><topic>铝合金板</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming-Yuan</creatorcontrib><creatorcontrib>Xiong, Bai-Qing</creatorcontrib><creatorcontrib>Wang, Guo-Jun</creatorcontrib><creatorcontrib>Tong, You-Zhi</creatorcontrib><creatorcontrib>Li, Xi-Wu</creatorcontrib><creatorcontrib>Huang, Shu-Hui</creatorcontrib><creatorcontrib>Li, Zhi-Hui</creatorcontrib><creatorcontrib>Zhang, Yong-An</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming-Yuan</au><au>Xiong, Bai-Qing</au><au>Wang, Guo-Jun</au><au>Tong, You-Zhi</au><au>Li, Xi-Wu</au><au>Huang, Shu-Hui</au><au>Li, Zhi-Hui</au><au>Zhang, Yong-An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture mechanism of a laminated aluminum alloy plate during ballistic impact</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><addtitle>Rare Metals</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>36</volume><issue>9</issue><spage>737</spage><epage>745</epage><pages>737-745</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure.Optical microscopy(OM),electron back-scattered diffraction(EBSD) and scanning electron microscopy(SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed.Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging.The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer,accounting for the asymmetry of damage.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-015-0684-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2173-990X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1001-0521 |
ispartof | Rare metals, 2017-09, Vol.36 (9), p.737-745 |
issn | 1001-0521 1867-7185 |
language | eng |
recordid | cdi_proquest_journals_1931554307 |
source | Springer Nature |
subjects | Adiabatic flow Alloys Aluminum alloys Aluminum base alloys Biomaterials Chemistry and Materials Science Crack tips Craters Deflection Deformation mechanisms Delamination Ductile fracture Edge dislocations Electron backscatter diffraction Energy Fracture mechanics Fracture surfaces Materials Engineering Materials Science Metallic Materials Microstructure Nanoscale Science and Technology Optical data processing Optical microscopy Physical Chemistry Projectiles Scanning electron microscopy Shear bands Tips 光学显微镜 冲击过程 弹丸速度 扫描电子显微镜 断裂机理 电子背散射衍射 绝热剪切带 铝合金板 |
title | Fracture mechanism of a laminated aluminum alloy plate during ballistic impact |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20mechanism%20of%20a%20laminated%20aluminum%20alloy%20plate%20during%20ballistic%20impact&rft.jtitle=Rare%20metals&rft.au=Li,%20Ming-Yuan&rft.date=2017-09-01&rft.volume=36&rft.issue=9&rft.spage=737&rft.epage=745&rft.pages=737-745&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-015-0684-1&rft_dat=%3Cproquest_cross%3E1931554307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931554307&rft_id=info:pmid/&rft_cqvip_id=673226715&rfr_iscdi=true |