Loading…

Fracture mechanism of a laminated aluminum alloy plate during ballistic impact

The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine...

Full description

Saved in:
Bibliographic Details
Published in:Rare metals 2017-09, Vol.36 (9), p.737-745
Main Authors: Li, Ming-Yuan, Xiong, Bai-Qing, Wang, Guo-Jun, Tong, You-Zhi, Li, Xi-Wu, Huang, Shu-Hui, Li, Zhi-Hui, Zhang, Yong-An
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3
cites cdi_FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3
container_end_page 745
container_issue 9
container_start_page 737
container_title Rare metals
container_volume 36
creator Li, Ming-Yuan
Xiong, Bai-Qing
Wang, Guo-Jun
Tong, You-Zhi
Li, Xi-Wu
Huang, Shu-Hui
Li, Zhi-Hui
Zhang, Yong-An
description The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure.Optical microscopy(OM),electron back-scattered diffraction(EBSD) and scanning electron microscopy(SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed.Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging.The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer,accounting for the asymmetry of damage.
doi_str_mv 10.1007/s12598-015-0684-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1931554307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>673226715</cqvip_id><sourcerecordid>1931554307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3</originalsourceid><addsrcrecordid>eNp9kEtPwzAQhCMEEuXxA7hZcA7s-u0jqiggVXCBs-WmTpsqr9rJof8eV6kQJ047Wu03o50su0N4RAD1FJEKo3NAkYPUPMezbIZaqlyhFudJA2AOguJldhXjDoBzKWGWfSyCK4YxeNL4YuvaKjakK4kjtWuq1g1-TVw9Jjk2SdTdgfR12pL1GKp2Q1ZpV8WhKkjV9MnoJrsoXR397WleZ9-Ll6_5W778fH2fPy_zgnE25M6AMZprZZACZUoirhwXymjhwHEUmjJOkcoSvDYFCqo8Syh45hhXjl1nD5NvH7r96ONgd90Y2hRp0TAUgjNQ6QqnqyJ0MQZf2j5UjQsHi2CPtdmpNptqs8faLCaGTkzsjx_68Mf5H-j-FLTt2s0-cb9JUjFKpULBfgA6jXkF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1931554307</pqid></control><display><type>article</type><title>Fracture mechanism of a laminated aluminum alloy plate during ballistic impact</title><source>Springer Nature</source><creator>Li, Ming-Yuan ; Xiong, Bai-Qing ; Wang, Guo-Jun ; Tong, You-Zhi ; Li, Xi-Wu ; Huang, Shu-Hui ; Li, Zhi-Hui ; Zhang, Yong-An</creator><creatorcontrib>Li, Ming-Yuan ; Xiong, Bai-Qing ; Wang, Guo-Jun ; Tong, You-Zhi ; Li, Xi-Wu ; Huang, Shu-Hui ; Li, Zhi-Hui ; Zhang, Yong-An</creatorcontrib><description>The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure.Optical microscopy(OM),electron back-scattered diffraction(EBSD) and scanning electron microscopy(SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed.Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging.The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer,accounting for the asymmetry of damage.</description><identifier>ISSN: 1001-0521</identifier><identifier>EISSN: 1867-7185</identifier><identifier>DOI: 10.1007/s12598-015-0684-1</identifier><language>eng</language><publisher>Beijing: Nonferrous Metals Society of China</publisher><subject>Adiabatic flow ; Alloys ; Aluminum alloys ; Aluminum base alloys ; Biomaterials ; Chemistry and Materials Science ; Crack tips ; Craters ; Deflection ; Deformation mechanisms ; Delamination ; Ductile fracture ; Edge dislocations ; Electron backscatter diffraction ; Energy ; Fracture mechanics ; Fracture surfaces ; Materials Engineering ; Materials Science ; Metallic Materials ; Microstructure ; Nanoscale Science and Technology ; Optical data processing ; Optical microscopy ; Physical Chemistry ; Projectiles ; Scanning electron microscopy ; Shear bands ; Tips ; 光学显微镜 ; 冲击过程 ; 弹丸速度 ; 扫描电子显微镜 ; 断裂机理 ; 电子背散射衍射 ; 绝热剪切带 ; 铝合金板</subject><ispartof>Rare metals, 2017-09, Vol.36 (9), p.737-745</ispartof><rights>The Nonferrous Metals Society of China and Springer-Verlag Berlin Heidelberg 2016</rights><rights>Rare Metals is a copyright of Springer, 2017.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3</citedby><cites>FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3</cites><orcidid>0000-0002-2173-990X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/85314X/85314X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Ming-Yuan</creatorcontrib><creatorcontrib>Xiong, Bai-Qing</creatorcontrib><creatorcontrib>Wang, Guo-Jun</creatorcontrib><creatorcontrib>Tong, You-Zhi</creatorcontrib><creatorcontrib>Li, Xi-Wu</creatorcontrib><creatorcontrib>Huang, Shu-Hui</creatorcontrib><creatorcontrib>Li, Zhi-Hui</creatorcontrib><creatorcontrib>Zhang, Yong-An</creatorcontrib><title>Fracture mechanism of a laminated aluminum alloy plate during ballistic impact</title><title>Rare metals</title><addtitle>Rare Met</addtitle><addtitle>Rare Metals</addtitle><description>The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure.Optical microscopy(OM),electron back-scattered diffraction(EBSD) and scanning electron microscopy(SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed.Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging.The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer,accounting for the asymmetry of damage.</description><subject>Adiabatic flow</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Aluminum base alloys</subject><subject>Biomaterials</subject><subject>Chemistry and Materials Science</subject><subject>Crack tips</subject><subject>Craters</subject><subject>Deflection</subject><subject>Deformation mechanisms</subject><subject>Delamination</subject><subject>Ductile fracture</subject><subject>Edge dislocations</subject><subject>Electron backscatter diffraction</subject><subject>Energy</subject><subject>Fracture mechanics</subject><subject>Fracture surfaces</subject><subject>Materials Engineering</subject><subject>Materials Science</subject><subject>Metallic Materials</subject><subject>Microstructure</subject><subject>Nanoscale Science and Technology</subject><subject>Optical data processing</subject><subject>Optical microscopy</subject><subject>Physical Chemistry</subject><subject>Projectiles</subject><subject>Scanning electron microscopy</subject><subject>Shear bands</subject><subject>Tips</subject><subject>光学显微镜</subject><subject>冲击过程</subject><subject>弹丸速度</subject><subject>扫描电子显微镜</subject><subject>断裂机理</subject><subject>电子背散射衍射</subject><subject>绝热剪切带</subject><subject>铝合金板</subject><issn>1001-0521</issn><issn>1867-7185</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kEtPwzAQhCMEEuXxA7hZcA7s-u0jqiggVXCBs-WmTpsqr9rJof8eV6kQJ047Wu03o50su0N4RAD1FJEKo3NAkYPUPMezbIZaqlyhFudJA2AOguJldhXjDoBzKWGWfSyCK4YxeNL4YuvaKjakK4kjtWuq1g1-TVw9Jjk2SdTdgfR12pL1GKp2Q1ZpV8WhKkjV9MnoJrsoXR397WleZ9-Ll6_5W778fH2fPy_zgnE25M6AMZprZZACZUoirhwXymjhwHEUmjJOkcoSvDYFCqo8Syh45hhXjl1nD5NvH7r96ONgd90Y2hRp0TAUgjNQ6QqnqyJ0MQZf2j5UjQsHi2CPtdmpNptqs8faLCaGTkzsjx_68Mf5H-j-FLTt2s0-cb9JUjFKpULBfgA6jXkF</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Li, Ming-Yuan</creator><creator>Xiong, Bai-Qing</creator><creator>Wang, Guo-Jun</creator><creator>Tong, You-Zhi</creator><creator>Li, Xi-Wu</creator><creator>Huang, Shu-Hui</creator><creator>Li, Zhi-Hui</creator><creator>Zhang, Yong-An</creator><general>Nonferrous Metals Society of China</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>W92</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-2173-990X</orcidid></search><sort><creationdate>20170901</creationdate><title>Fracture mechanism of a laminated aluminum alloy plate during ballistic impact</title><author>Li, Ming-Yuan ; Xiong, Bai-Qing ; Wang, Guo-Jun ; Tong, You-Zhi ; Li, Xi-Wu ; Huang, Shu-Hui ; Li, Zhi-Hui ; Zhang, Yong-An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adiabatic flow</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Aluminum base alloys</topic><topic>Biomaterials</topic><topic>Chemistry and Materials Science</topic><topic>Crack tips</topic><topic>Craters</topic><topic>Deflection</topic><topic>Deformation mechanisms</topic><topic>Delamination</topic><topic>Ductile fracture</topic><topic>Edge dislocations</topic><topic>Electron backscatter diffraction</topic><topic>Energy</topic><topic>Fracture mechanics</topic><topic>Fracture surfaces</topic><topic>Materials Engineering</topic><topic>Materials Science</topic><topic>Metallic Materials</topic><topic>Microstructure</topic><topic>Nanoscale Science and Technology</topic><topic>Optical data processing</topic><topic>Optical microscopy</topic><topic>Physical Chemistry</topic><topic>Projectiles</topic><topic>Scanning electron microscopy</topic><topic>Shear bands</topic><topic>Tips</topic><topic>光学显微镜</topic><topic>冲击过程</topic><topic>弹丸速度</topic><topic>扫描电子显微镜</topic><topic>断裂机理</topic><topic>电子背散射衍射</topic><topic>绝热剪切带</topic><topic>铝合金板</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Ming-Yuan</creatorcontrib><creatorcontrib>Xiong, Bai-Qing</creatorcontrib><creatorcontrib>Wang, Guo-Jun</creatorcontrib><creatorcontrib>Tong, You-Zhi</creatorcontrib><creatorcontrib>Li, Xi-Wu</creatorcontrib><creatorcontrib>Huang, Shu-Hui</creatorcontrib><creatorcontrib>Li, Zhi-Hui</creatorcontrib><creatorcontrib>Zhang, Yong-An</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库-工程技术</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Rare metals</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Ming-Yuan</au><au>Xiong, Bai-Qing</au><au>Wang, Guo-Jun</au><au>Tong, You-Zhi</au><au>Li, Xi-Wu</au><au>Huang, Shu-Hui</au><au>Li, Zhi-Hui</au><au>Zhang, Yong-An</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fracture mechanism of a laminated aluminum alloy plate during ballistic impact</atitle><jtitle>Rare metals</jtitle><stitle>Rare Met</stitle><addtitle>Rare Metals</addtitle><date>2017-09-01</date><risdate>2017</risdate><volume>36</volume><issue>9</issue><spage>737</spage><epage>745</epage><pages>737-745</pages><issn>1001-0521</issn><eissn>1867-7185</eissn><abstract>The multilayered 7XXX series aluminum alloy was impacted by 7.62 mm ogival projectiles at velocities ranging from 787 to 851m·s~(-1). The deformed microstructure under various impacting velocities and fracture surfaces of different sections were investigated at different physical scales to determine the process of failure.Optical microscopy(OM),electron back-scattered diffraction(EBSD) and scanning electron microscopy(SEM) were used in the investigation. The results show that crater is constrained in the 7B52 front layer and two types of adiabatic shear bands which are transformed bands and deformed bands and different types of cracks are observed.Spall fracture is the significant failure mode of 7B52 front layer, and the resulting delamination leads to the presence of bending tensile fracture instead of the shear plugging.The ductile 7A01 layer blunts and deflects the spall crack tips, preventing the targets from full spall, and induces a constraint of 7A52 rear layer. The level of the constraint determines different fracture modes of 7A52 layer,accounting for the asymmetry of damage.</abstract><cop>Beijing</cop><pub>Nonferrous Metals Society of China</pub><doi>10.1007/s12598-015-0684-1</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-2173-990X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1001-0521
ispartof Rare metals, 2017-09, Vol.36 (9), p.737-745
issn 1001-0521
1867-7185
language eng
recordid cdi_proquest_journals_1931554307
source Springer Nature
subjects Adiabatic flow
Alloys
Aluminum alloys
Aluminum base alloys
Biomaterials
Chemistry and Materials Science
Crack tips
Craters
Deflection
Deformation mechanisms
Delamination
Ductile fracture
Edge dislocations
Electron backscatter diffraction
Energy
Fracture mechanics
Fracture surfaces
Materials Engineering
Materials Science
Metallic Materials
Microstructure
Nanoscale Science and Technology
Optical data processing
Optical microscopy
Physical Chemistry
Projectiles
Scanning electron microscopy
Shear bands
Tips
光学显微镜
冲击过程
弹丸速度
扫描电子显微镜
断裂机理
电子背散射衍射
绝热剪切带
铝合金板
title Fracture mechanism of a laminated aluminum alloy plate during ballistic impact
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T11%3A12%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fracture%20mechanism%20of%20a%20laminated%20aluminum%20alloy%20plate%20during%20ballistic%20impact&rft.jtitle=Rare%20metals&rft.au=Li,%20Ming-Yuan&rft.date=2017-09-01&rft.volume=36&rft.issue=9&rft.spage=737&rft.epage=745&rft.pages=737-745&rft.issn=1001-0521&rft.eissn=1867-7185&rft_id=info:doi/10.1007/s12598-015-0684-1&rft_dat=%3Cproquest_cross%3E1931554307%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c343t-a909984879120237611ba457985a0a41582342126f0e89c1527e3c340e3a347a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1931554307&rft_id=info:pmid/&rft_cqvip_id=673226715&rfr_iscdi=true