Loading…

Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory

Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling p...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mathematical Modelling 2017-05, Vol.45, p.65-84
Main Authors: Liu, J.J., Li, C., Fan, X.L., Tong, L.H.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73
cites cdi_FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73
container_end_page 84
container_issue
container_start_page 65
container_title Applied Mathematical Modelling
container_volume 45
creator Liu, J.J.
Li, C.
Fan, X.L.
Tong, L.H.
description Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.
doi_str_mv 10.1016/j.apm.2016.12.006
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932084130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932084130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWKsP4C7gesaTy9yWUryB4KaCu3BmJrEZ0mRMpsW-vVPqwtX5D_wX-Ai5ZZAzYOX9kOO4zfksc8ZzgPKMLEBAlTUgP8__6UtyldIAAMX8LchmHdGnvY5JUxO1pnvbRpxs8BR9T9OErXV2OtBgKP5YdO5At2Fv_Rf16MPocNKJtph0T-eMD96FDh3VDtNku2Ny2ugQD9fkwqBL-ubvLsnH0-N69ZK9vT-_rh7esk6wcsrQgKxFXZbQIfTAS9n22PVdAaKVhvcoJKs4SFP3vCgKU3EsZMkbxnXDu74SS3J36h1j-N7pNKkh7KKfJxVrBIdaMgGzi51cXQwpRW3UGO0W40ExUEegalAzUHUEqhhXM1DxCyyga5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932084130</pqid></control><display><type>article</type><title>Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory</title><source>EBSCOhost Business Source Ultimate</source><source>ScienceDirect Journals</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Liu, J.J. ; Li, C. ; Fan, X.L. ; Tong, L.H.</creator><creatorcontrib>Liu, J.J. ; Li, C. ; Fan, X.L. ; Tong, L.H.</creatorcontrib><description>Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2016.12.006</identifier><language>eng</language><publisher>New York: Elsevier BV</publisher><subject>Applied mathematics ; Boundary conditions ; Constants ; Coupled modes ; Dynamic stability ; Elasticity ; Flutter ; Free vibration ; Galerkin method ; Hamilton's principle ; Nanostructure ; Nonlocal elasticity ; Partial differential equations ; Stability analysis ; Vibration</subject><ispartof>Applied Mathematical Modelling, 2017-05, Vol.45, p.65-84</ispartof><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73</citedby><cites>FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, J.J.</creatorcontrib><creatorcontrib>Li, C.</creatorcontrib><creatorcontrib>Fan, X.L.</creatorcontrib><creatorcontrib>Tong, L.H.</creatorcontrib><title>Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory</title><title>Applied Mathematical Modelling</title><description>Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Constants</subject><subject>Coupled modes</subject><subject>Dynamic stability</subject><subject>Elasticity</subject><subject>Flutter</subject><subject>Free vibration</subject><subject>Galerkin method</subject><subject>Hamilton's principle</subject><subject>Nanostructure</subject><subject>Nonlocal elasticity</subject><subject>Partial differential equations</subject><subject>Stability analysis</subject><subject>Vibration</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEUhoMoWKsP4C7gesaTy9yWUryB4KaCu3BmJrEZ0mRMpsW-vVPqwtX5D_wX-Ai5ZZAzYOX9kOO4zfksc8ZzgPKMLEBAlTUgP8__6UtyldIAAMX8LchmHdGnvY5JUxO1pnvbRpxs8BR9T9OErXV2OtBgKP5YdO5At2Fv_Rf16MPocNKJtph0T-eMD96FDh3VDtNku2Ny2ugQD9fkwqBL-ubvLsnH0-N69ZK9vT-_rh7esk6wcsrQgKxFXZbQIfTAS9n22PVdAaKVhvcoJKs4SFP3vCgKU3EsZMkbxnXDu74SS3J36h1j-N7pNKkh7KKfJxVrBIdaMgGzi51cXQwpRW3UGO0W40ExUEegalAzUHUEqhhXM1DxCyyga5o</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Liu, J.J.</creator><creator>Li, C.</creator><creator>Fan, X.L.</creator><creator>Tong, L.H.</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201705</creationdate><title>Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory</title><author>Liu, J.J. ; Li, C. ; Fan, X.L. ; Tong, L.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Constants</topic><topic>Coupled modes</topic><topic>Dynamic stability</topic><topic>Elasticity</topic><topic>Flutter</topic><topic>Free vibration</topic><topic>Galerkin method</topic><topic>Hamilton's principle</topic><topic>Nanostructure</topic><topic>Nonlocal elasticity</topic><topic>Partial differential equations</topic><topic>Stability analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, J.J.</creatorcontrib><creatorcontrib>Li, C.</creatorcontrib><creatorcontrib>Fan, X.L.</creatorcontrib><creatorcontrib>Tong, L.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, J.J.</au><au>Li, C.</au><au>Fan, X.L.</au><au>Tong, L.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-05</date><risdate>2017</risdate><volume>45</volume><spage>65</spage><epage>84</epage><pages>65-84</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.</abstract><cop>New York</cop><pub>Elsevier BV</pub><doi>10.1016/j.apm.2016.12.006</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0307-904X
ispartof Applied Mathematical Modelling, 2017-05, Vol.45, p.65-84
issn 0307-904X
1088-8691
0307-904X
language eng
recordid cdi_proquest_journals_1932084130
source EBSCOhost Business Source Ultimate; ScienceDirect Journals; Taylor and Francis Social Sciences and Humanities Collection
subjects Applied mathematics
Boundary conditions
Constants
Coupled modes
Dynamic stability
Elasticity
Flutter
Free vibration
Galerkin method
Hamilton's principle
Nanostructure
Nonlocal elasticity
Partial differential equations
Stability analysis
Vibration
title Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transverse%20free%20vibration%20and%20stability%20of%20axially%20moving%20nanoplates%20based%20on%20nonlocal%20elasticity%20theory&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Liu,%20J.J.&rft.date=2017-05&rft.volume=45&rft.spage=65&rft.epage=84&rft.pages=65-84&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.12.006&rft_dat=%3Cproquest_cross%3E1932084130%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932084130&rft_id=info:pmid/&rfr_iscdi=true