Loading…
Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory
Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling p...
Saved in:
Published in: | Applied Mathematical Modelling 2017-05, Vol.45, p.65-84 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73 |
container_end_page | 84 |
container_issue | |
container_start_page | 65 |
container_title | Applied Mathematical Modelling |
container_volume | 45 |
creator | Liu, J.J. Li, C. Fan, X.L. Tong, L.H. |
description | Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed. |
doi_str_mv | 10.1016/j.apm.2016.12.006 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1932084130</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1932084130</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73</originalsourceid><addsrcrecordid>eNpNkMtKAzEUhoMoWKsP4C7gesaTy9yWUryB4KaCu3BmJrEZ0mRMpsW-vVPqwtX5D_wX-Ai5ZZAzYOX9kOO4zfksc8ZzgPKMLEBAlTUgP8__6UtyldIAAMX8LchmHdGnvY5JUxO1pnvbRpxs8BR9T9OErXV2OtBgKP5YdO5At2Fv_Rf16MPocNKJtph0T-eMD96FDh3VDtNku2Ny2ugQD9fkwqBL-ubvLsnH0-N69ZK9vT-_rh7esk6wcsrQgKxFXZbQIfTAS9n22PVdAaKVhvcoJKs4SFP3vCgKU3EsZMkbxnXDu74SS3J36h1j-N7pNKkh7KKfJxVrBIdaMgGzi51cXQwpRW3UGO0W40ExUEegalAzUHUEqhhXM1DxCyyga5o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1932084130</pqid></control><display><type>article</type><title>Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory</title><source>EBSCOhost Business Source Ultimate</source><source>ScienceDirect Journals</source><source>Taylor and Francis Social Sciences and Humanities Collection</source><creator>Liu, J.J. ; Li, C. ; Fan, X.L. ; Tong, L.H.</creator><creatorcontrib>Liu, J.J. ; Li, C. ; Fan, X.L. ; Tong, L.H.</creatorcontrib><description>Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.</description><identifier>ISSN: 0307-904X</identifier><identifier>ISSN: 1088-8691</identifier><identifier>EISSN: 0307-904X</identifier><identifier>DOI: 10.1016/j.apm.2016.12.006</identifier><language>eng</language><publisher>New York: Elsevier BV</publisher><subject>Applied mathematics ; Boundary conditions ; Constants ; Coupled modes ; Dynamic stability ; Elasticity ; Flutter ; Free vibration ; Galerkin method ; Hamilton's principle ; Nanostructure ; Nonlocal elasticity ; Partial differential equations ; Stability analysis ; Vibration</subject><ispartof>Applied Mathematical Modelling, 2017-05, Vol.45, p.65-84</ispartof><rights>Copyright Elsevier BV May 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73</citedby><cites>FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, J.J.</creatorcontrib><creatorcontrib>Li, C.</creatorcontrib><creatorcontrib>Fan, X.L.</creatorcontrib><creatorcontrib>Tong, L.H.</creatorcontrib><title>Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory</title><title>Applied Mathematical Modelling</title><description>Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.</description><subject>Applied mathematics</subject><subject>Boundary conditions</subject><subject>Constants</subject><subject>Coupled modes</subject><subject>Dynamic stability</subject><subject>Elasticity</subject><subject>Flutter</subject><subject>Free vibration</subject><subject>Galerkin method</subject><subject>Hamilton's principle</subject><subject>Nanostructure</subject><subject>Nonlocal elasticity</subject><subject>Partial differential equations</subject><subject>Stability analysis</subject><subject>Vibration</subject><issn>0307-904X</issn><issn>1088-8691</issn><issn>0307-904X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkMtKAzEUhoMoWKsP4C7gesaTy9yWUryB4KaCu3BmJrEZ0mRMpsW-vVPqwtX5D_wX-Ai5ZZAzYOX9kOO4zfksc8ZzgPKMLEBAlTUgP8__6UtyldIAAMX8LchmHdGnvY5JUxO1pnvbRpxs8BR9T9OErXV2OtBgKP5YdO5At2Fv_Rf16MPocNKJtph0T-eMD96FDh3VDtNku2Ny2ugQD9fkwqBL-ubvLsnH0-N69ZK9vT-_rh7esk6wcsrQgKxFXZbQIfTAS9n22PVdAaKVhvcoJKs4SFP3vCgKU3EsZMkbxnXDu74SS3J36h1j-N7pNKkh7KKfJxVrBIdaMgGzi51cXQwpRW3UGO0W40ExUEegalAzUHUEqhhXM1DxCyyga5o</recordid><startdate>201705</startdate><enddate>201705</enddate><creator>Liu, J.J.</creator><creator>Li, C.</creator><creator>Fan, X.L.</creator><creator>Tong, L.H.</creator><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201705</creationdate><title>Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory</title><author>Liu, J.J. ; Li, C. ; Fan, X.L. ; Tong, L.H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Applied mathematics</topic><topic>Boundary conditions</topic><topic>Constants</topic><topic>Coupled modes</topic><topic>Dynamic stability</topic><topic>Elasticity</topic><topic>Flutter</topic><topic>Free vibration</topic><topic>Galerkin method</topic><topic>Hamilton's principle</topic><topic>Nanostructure</topic><topic>Nonlocal elasticity</topic><topic>Partial differential equations</topic><topic>Stability analysis</topic><topic>Vibration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, J.J.</creatorcontrib><creatorcontrib>Li, C.</creatorcontrib><creatorcontrib>Fan, X.L.</creatorcontrib><creatorcontrib>Tong, L.H.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Applied Mathematical Modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, J.J.</au><au>Li, C.</au><au>Fan, X.L.</au><au>Tong, L.H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory</atitle><jtitle>Applied Mathematical Modelling</jtitle><date>2017-05</date><risdate>2017</risdate><volume>45</volume><spage>65</spage><epage>84</epage><pages>65-84</pages><issn>0307-904X</issn><issn>1088-8691</issn><eissn>0307-904X</eissn><abstract>Transverse dynamical behaviors of axially moving nanoplates which could be used to model the graphene nanosheets or other plate-like nanostructures with axial motion are examined based on the nonlocal elasticity theory. The Hamilton's principle is employed to derive the multivariable coupling partial differential equations governing the transverse motion of the axially moving nanoplates. Subsequently, the equations are transformed into a set of ordinary differential equations by the method of separation of variables. The effects of dimensionless small-scale parameter, axial speed and boundary conditions on the natural frequencies in sub-critical region are discussed by the method of complex mode. Then the Galerkin method is employed to analyze the effects of small-scale parameter on divergent instability and coupled-mode flutter in super-critical region. It is shown that the existence of small-scale parameter contributes to strengthen the stability in the super-critical region, but the stability of the sub-critical region is weakened. The regions of divergent instability and coupled-mode flutter decrease even disappear with an increase in the small-scale parameter. The natural frequencies in sub-critical region show different tendencies with different boundary effects, while the natural frequencies in super-critical region keep constants with the increase of axial speed.</abstract><cop>New York</cop><pub>Elsevier BV</pub><doi>10.1016/j.apm.2016.12.006</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0307-904X |
ispartof | Applied Mathematical Modelling, 2017-05, Vol.45, p.65-84 |
issn | 0307-904X 1088-8691 0307-904X |
language | eng |
recordid | cdi_proquest_journals_1932084130 |
source | EBSCOhost Business Source Ultimate; ScienceDirect Journals; Taylor and Francis Social Sciences and Humanities Collection |
subjects | Applied mathematics Boundary conditions Constants Coupled modes Dynamic stability Elasticity Flutter Free vibration Galerkin method Hamilton's principle Nanostructure Nonlocal elasticity Partial differential equations Stability analysis Vibration |
title | Transverse free vibration and stability of axially moving nanoplates based on nonlocal elasticity theory |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T16%3A06%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transverse%20free%20vibration%20and%20stability%20of%20axially%20moving%20nanoplates%20based%20on%20nonlocal%20elasticity%20theory&rft.jtitle=Applied%20Mathematical%20Modelling&rft.au=Liu,%20J.J.&rft.date=2017-05&rft.volume=45&rft.spage=65&rft.epage=84&rft.pages=65-84&rft.issn=0307-904X&rft.eissn=0307-904X&rft_id=info:doi/10.1016/j.apm.2016.12.006&rft_dat=%3Cproquest_cross%3E1932084130%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-af04838660ca0d0264bdacdc503b4f2da3417204f8d2555f72a5462912e92cd73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1932084130&rft_id=info:pmid/&rfr_iscdi=true |