Loading…

Catalytic transfer hydrogenation of butyl levulinate to γ-valerolactone over zirconium phosphates with adjustable Lewis and Brønsted acid sites

[Display omitted] •Zirconium phosphate is efficient and selective for γ-valerolactone (GVL) production.•The properties of the catalyst can be controlled by adjusting Zr and P contents.•Catalytic activity essentially depends on the ratio of Lewis to Brønsted acid sites.•98.1% butyl levulinate convers...

Full description

Saved in:
Bibliographic Details
Published in:Applied catalysis. B, Environmental Environmental, 2017-10, Vol.214, p.67-77
Main Authors: Li, Fukun, France, Liam John, Cai, Zhenping, Li, Yingwen, Liu, Sijie, Lou, Hongming, Long, Jinxing, Li, Xuehui
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] •Zirconium phosphate is efficient and selective for γ-valerolactone (GVL) production.•The properties of the catalyst can be controlled by adjusting Zr and P contents.•Catalytic activity essentially depends on the ratio of Lewis to Brønsted acid sites.•98.1% butyl levulinate conversion is achieved with 95.7% GVL yield over ZrPO-1.00.•The catalyst shows high stability and reusability. The efficient production of γ-valerolactone (GVL) from renewable resources is attracting increasing attention in view of its wide application in fuel and synthetic chemistry. In this study, a series of novel and efficient zirconium phosphate catalysts were developed for the transfer hydrogenation of levulinate esters to GVL using isopropanol as the hydrogen donor. Experimental results show that 98.1% butyl levulinate conversion and 95.7% GVL yield can be achieved with ZrPO-1.00 at 483K after 2.0h. Intensive characterization of the synthesized catalysts using N2 adsorption-desorption, FT-IR, ICP-AES, XPS, NH3-TPD, Py-FTIR and XRD demonstrates that the physicochemical properties, particularly hydrophobicity, Lewis to Brønsted acid site ratio and Lewis acid site strength were subtly tuned via adjustment of the molar proportion of phosphorus to zirconium, which is responsible for excellent transfer hydrogenation activity. Furthermore, this optimized catalyst exhibits high stability and recyclability for at least ten reaction cycles. In addition, a plausible reaction pathway and catalytic mechanism are proposed.
ISSN:0926-3373
1873-3883
DOI:10.1016/j.apcatb.2017.05.013