Loading…

Discovering aspects of online consumer reviews

In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of t...

Full description

Saved in:
Bibliographic Details
Published in:Journal of information science 2016-08, Vol.42 (4), p.492-506
Main Authors: Suleman, Kaheer, Vechtomova, Olga
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3
cites cdi_FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3
container_end_page 506
container_issue 4
container_start_page 492
container_title Journal of information science
container_volume 42
creator Suleman, Kaheer
Vechtomova, Olga
description In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of the hypernyms of the cluster members. Our approach also includes a method for assigning class labels to each of the clusters. We evaluated our methods on large datasets of restaurant and camera reviews and found that the two-step clustering process performed better than a single-step clustering process at identifying aspects and words refering to aspects. Finally, we compare our method to a state-of-the-art topic modelling approach by Titov and McDonald, and demonstrate better results on both datasets.
doi_str_mv 10.1177/0165551515595742
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1933653442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0165551515595742</sage_id><sourcerecordid>1933653442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3</originalsourceid><addsrcrecordid>eNp1kM1LxDAUxIMoWFfvHgueu-blsz3K-gkLXvRcmuRl6bLb1KRd8b-3ZT2IIO8wh_nNPBhCroEuAbS-paCklDCdrKQW7IRkoAUUSpTylGSzXcz-OblIaUsplRUXGVnet8mGA8a22-RN6tEOKQ8-D92u7TC3oUvjHmMe8dDiZ7okZ77ZJbz60QV5f3x4Wz0X69enl9XdurBcsaFQvNS6Ur6k2gNDDc4q5GgbMM5pxnhVCm2cl9QyVhrljFEMnBTCGERj-YLcHHv7GD5GTEO9DWPsppc1VJwryYVgE0WPlI0hpYi-7mO7b-JXDbSeV6n_rjJFimMkNRv8Vfof_w2gPmDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933653442</pqid></control><display><type>article</type><title>Discovering aspects of online consumer reviews</title><source>Library &amp; Information Science Abstracts (LISA)</source><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Suleman, Kaheer ; Vechtomova, Olga</creator><creatorcontrib>Suleman, Kaheer ; Vechtomova, Olga</creatorcontrib><description>In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of the hypernyms of the cluster members. Our approach also includes a method for assigning class labels to each of the clusters. We evaluated our methods on large datasets of restaurant and camera reviews and found that the two-step clustering process performed better than a single-step clustering process at identifying aspects and words refering to aspects. Finally, we compare our method to a state-of-the-art topic modelling approach by Titov and McDonald, and demonstrate better results on both datasets.</description><identifier>ISSN: 0165-5515</identifier><identifier>EISSN: 1741-6485</identifier><identifier>DOI: 10.1177/0165551515595742</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cluster analysis ; Clustering ; Clusters ; Consumers ; Datasets ; Product reviews ; Semantics ; Similarity</subject><ispartof>Journal of information science, 2016-08, Vol.42 (4), p.492-506</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3</citedby><cites>FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,34112</link.rule.ids></links><search><creatorcontrib>Suleman, Kaheer</creatorcontrib><creatorcontrib>Vechtomova, Olga</creatorcontrib><title>Discovering aspects of online consumer reviews</title><title>Journal of information science</title><description>In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of the hypernyms of the cluster members. Our approach also includes a method for assigning class labels to each of the clusters. We evaluated our methods on large datasets of restaurant and camera reviews and found that the two-step clustering process performed better than a single-step clustering process at identifying aspects and words refering to aspects. Finally, we compare our method to a state-of-the-art topic modelling approach by Titov and McDonald, and demonstrate better results on both datasets.</description><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Consumers</subject><subject>Datasets</subject><subject>Product reviews</subject><subject>Semantics</subject><subject>Similarity</subject><issn>0165-5515</issn><issn>1741-6485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp1kM1LxDAUxIMoWFfvHgueu-blsz3K-gkLXvRcmuRl6bLb1KRd8b-3ZT2IIO8wh_nNPBhCroEuAbS-paCklDCdrKQW7IRkoAUUSpTylGSzXcz-OblIaUsplRUXGVnet8mGA8a22-RN6tEOKQ8-D92u7TC3oUvjHmMe8dDiZ7okZ77ZJbz60QV5f3x4Wz0X69enl9XdurBcsaFQvNS6Ur6k2gNDDc4q5GgbMM5pxnhVCm2cl9QyVhrljFEMnBTCGERj-YLcHHv7GD5GTEO9DWPsppc1VJwryYVgE0WPlI0hpYi-7mO7b-JXDbSeV6n_rjJFimMkNRv8Vfof_w2gPmDE</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Suleman, Kaheer</creator><creator>Vechtomova, Olga</creator><general>SAGE Publications</general><general>Bowker-Saur Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>Discovering aspects of online consumer reviews</title><author>Suleman, Kaheer ; Vechtomova, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Consumers</topic><topic>Datasets</topic><topic>Product reviews</topic><topic>Semantics</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suleman, Kaheer</creatorcontrib><creatorcontrib>Vechtomova, Olga</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library &amp; Information Sciences Abstracts (LISA)</collection><collection>Library &amp; Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suleman, Kaheer</au><au>Vechtomova, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering aspects of online consumer reviews</atitle><jtitle>Journal of information science</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>42</volume><issue>4</issue><spage>492</spage><epage>506</epage><pages>492-506</pages><issn>0165-5515</issn><eissn>1741-6485</eissn><abstract>In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of the hypernyms of the cluster members. Our approach also includes a method for assigning class labels to each of the clusters. We evaluated our methods on large datasets of restaurant and camera reviews and found that the two-step clustering process performed better than a single-step clustering process at identifying aspects and words refering to aspects. Finally, we compare our method to a state-of-the-art topic modelling approach by Titov and McDonald, and demonstrate better results on both datasets.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0165551515595742</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0165-5515
ispartof Journal of information science, 2016-08, Vol.42 (4), p.492-506
issn 0165-5515
1741-6485
language eng
recordid cdi_proquest_journals_1933653442
source Library & Information Science Abstracts (LISA); SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)
subjects Cluster analysis
Clustering
Clusters
Consumers
Datasets
Product reviews
Semantics
Similarity
title Discovering aspects of online consumer reviews
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20aspects%20of%20online%20consumer%20reviews&rft.jtitle=Journal%20of%20information%20science&rft.au=Suleman,%20Kaheer&rft.date=2016-08-01&rft.volume=42&rft.issue=4&rft.spage=492&rft.epage=506&rft.pages=492-506&rft.issn=0165-5515&rft.eissn=1741-6485&rft_id=info:doi/10.1177/0165551515595742&rft_dat=%3Cproquest_cross%3E1933653442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1933653442&rft_id=info:pmid/&rft_sage_id=10.1177_0165551515595742&rfr_iscdi=true