Loading…
Discovering aspects of online consumer reviews
In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of t...
Saved in:
Published in: | Journal of information science 2016-08, Vol.42 (4), p.492-506 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3 |
container_end_page | 506 |
container_issue | 4 |
container_start_page | 492 |
container_title | Journal of information science |
container_volume | 42 |
creator | Suleman, Kaheer Vechtomova, Olga |
description | In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of the hypernyms of the cluster members. Our approach also includes a method for assigning class labels to each of the clusters. We evaluated our methods on large datasets of restaurant and camera reviews and found that the two-step clustering process performed better than a single-step clustering process at identifying aspects and words refering to aspects. Finally, we compare our method to a state-of-the-art topic modelling approach by Titov and McDonald, and demonstrate better results on both datasets. |
doi_str_mv | 10.1177/0165551515595742 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1933653442</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_0165551515595742</sage_id><sourcerecordid>1933653442</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3</originalsourceid><addsrcrecordid>eNp1kM1LxDAUxIMoWFfvHgueu-blsz3K-gkLXvRcmuRl6bLb1KRd8b-3ZT2IIO8wh_nNPBhCroEuAbS-paCklDCdrKQW7IRkoAUUSpTylGSzXcz-OblIaUsplRUXGVnet8mGA8a22-RN6tEOKQ8-D92u7TC3oUvjHmMe8dDiZ7okZ77ZJbz60QV5f3x4Wz0X69enl9XdurBcsaFQvNS6Ur6k2gNDDc4q5GgbMM5pxnhVCm2cl9QyVhrljFEMnBTCGERj-YLcHHv7GD5GTEO9DWPsppc1VJwryYVgE0WPlI0hpYi-7mO7b-JXDbSeV6n_rjJFimMkNRv8Vfof_w2gPmDE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1933653442</pqid></control><display><type>article</type><title>Discovering aspects of online consumer reviews</title><source>Library & Information Science Abstracts (LISA)</source><source>SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list)</source><creator>Suleman, Kaheer ; Vechtomova, Olga</creator><creatorcontrib>Suleman, Kaheer ; Vechtomova, Olga</creatorcontrib><description>In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of the hypernyms of the cluster members. Our approach also includes a method for assigning class labels to each of the clusters. We evaluated our methods on large datasets of restaurant and camera reviews and found that the two-step clustering process performed better than a single-step clustering process at identifying aspects and words refering to aspects. Finally, we compare our method to a state-of-the-art topic modelling approach by Titov and McDonald, and demonstrate better results on both datasets.</description><identifier>ISSN: 0165-5515</identifier><identifier>EISSN: 1741-6485</identifier><identifier>DOI: 10.1177/0165551515595742</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Cluster analysis ; Clustering ; Clusters ; Consumers ; Datasets ; Product reviews ; Semantics ; Similarity</subject><ispartof>Journal of information science, 2016-08, Vol.42 (4), p.492-506</ispartof><rights>The Author(s) 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3</citedby><cites>FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902,34112</link.rule.ids></links><search><creatorcontrib>Suleman, Kaheer</creatorcontrib><creatorcontrib>Vechtomova, Olga</creatorcontrib><title>Discovering aspects of online consumer reviews</title><title>Journal of information science</title><description>In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of the hypernyms of the cluster members. Our approach also includes a method for assigning class labels to each of the clusters. We evaluated our methods on large datasets of restaurant and camera reviews and found that the two-step clustering process performed better than a single-step clustering process at identifying aspects and words refering to aspects. Finally, we compare our method to a state-of-the-art topic modelling approach by Titov and McDonald, and demonstrate better results on both datasets.</description><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Clusters</subject><subject>Consumers</subject><subject>Datasets</subject><subject>Product reviews</subject><subject>Semantics</subject><subject>Similarity</subject><issn>0165-5515</issn><issn>1741-6485</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2016</creationdate><recordtype>article</recordtype><sourceid>F2A</sourceid><recordid>eNp1kM1LxDAUxIMoWFfvHgueu-blsz3K-gkLXvRcmuRl6bLb1KRd8b-3ZT2IIO8wh_nNPBhCroEuAbS-paCklDCdrKQW7IRkoAUUSpTylGSzXcz-OblIaUsplRUXGVnet8mGA8a22-RN6tEOKQ8-D92u7TC3oUvjHmMe8dDiZ7okZ77ZJbz60QV5f3x4Wz0X69enl9XdurBcsaFQvNS6Ur6k2gNDDc4q5GgbMM5pxnhVCm2cl9QyVhrljFEMnBTCGERj-YLcHHv7GD5GTEO9DWPsppc1VJwryYVgE0WPlI0hpYi-7mO7b-JXDbSeV6n_rjJFimMkNRv8Vfof_w2gPmDE</recordid><startdate>20160801</startdate><enddate>20160801</enddate><creator>Suleman, Kaheer</creator><creator>Vechtomova, Olga</creator><general>SAGE Publications</general><general>Bowker-Saur Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>E3H</scope><scope>F2A</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20160801</creationdate><title>Discovering aspects of online consumer reviews</title><author>Suleman, Kaheer ; Vechtomova, Olga</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2016</creationdate><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Clusters</topic><topic>Consumers</topic><topic>Datasets</topic><topic>Product reviews</topic><topic>Semantics</topic><topic>Similarity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suleman, Kaheer</creatorcontrib><creatorcontrib>Vechtomova, Olga</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Library & Information Sciences Abstracts (LISA)</collection><collection>Library & Information Science Abstracts (LISA)</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of information science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suleman, Kaheer</au><au>Vechtomova, Olga</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovering aspects of online consumer reviews</atitle><jtitle>Journal of information science</jtitle><date>2016-08-01</date><risdate>2016</risdate><volume>42</volume><issue>4</issue><spage>492</spage><epage>506</epage><pages>492-506</pages><issn>0165-5515</issn><eissn>1741-6485</eissn><abstract>In this paper we propose a fully unsupervised approach for product aspect discovery in on-line consumer reviews. We apply a two-step hierarchical clustering process in which we first cluster words representing aspects based on the semantic similarity of their contexts and then on the similarity of the hypernyms of the cluster members. Our approach also includes a method for assigning class labels to each of the clusters. We evaluated our methods on large datasets of restaurant and camera reviews and found that the two-step clustering process performed better than a single-step clustering process at identifying aspects and words refering to aspects. Finally, we compare our method to a state-of-the-art topic modelling approach by Titov and McDonald, and demonstrate better results on both datasets.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1177/0165551515595742</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0165-5515 |
ispartof | Journal of information science, 2016-08, Vol.42 (4), p.492-506 |
issn | 0165-5515 1741-6485 |
language | eng |
recordid | cdi_proquest_journals_1933653442 |
source | Library & Information Science Abstracts (LISA); SAGE:Jisc Collections:SAGE Journals Read and Publish 2023-2024:2025 extension (reading list) |
subjects | Cluster analysis Clustering Clusters Consumers Datasets Product reviews Semantics Similarity |
title | Discovering aspects of online consumer reviews |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T23%3A28%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovering%20aspects%20of%20online%20consumer%20reviews&rft.jtitle=Journal%20of%20information%20science&rft.au=Suleman,%20Kaheer&rft.date=2016-08-01&rft.volume=42&rft.issue=4&rft.spage=492&rft.epage=506&rft.pages=492-506&rft.issn=0165-5515&rft.eissn=1741-6485&rft_id=info:doi/10.1177/0165551515595742&rft_dat=%3Cproquest_cross%3E1933653442%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-6387796f807f12e71dc6e3eca1bdd72239847bdf50c228b6dbb621d544bbeebc3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1933653442&rft_id=info:pmid/&rft_sage_id=10.1177_0165551515595742&rfr_iscdi=true |