Loading…

Study on the cohesion and adhesion of hot-poured crack sealants

Filling crack sealant is a main method to repair cracking of pavement. The cohesion and adhesion of crack sealant directly determine its service performance and durability. However, the competitive mechanism of cohesion and adhesion failure modes is not clear currently. This research proposed two me...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers of Structural and Civil Engineering 2017-09, Vol.11 (3), p.353-359
Main Authors: GUO, Meng, TAN, Yiqiu, DU, Xuesong, LV, Zhaofeng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Filling crack sealant is a main method to repair cracking of pavement. The cohesion and adhesion of crack sealant directly determine its service performance and durability. However, the competitive mechanism of cohesion and adhesion failure modes is not clear currently. This research proposed two methods to evaluate cohesion and adhesion of crack sealant, and analyzed the influence of temperature on cohesion and adhesion. The effect of moisture on low- temperature performance of crack sealant was also be evaluated by conducting a soaking test. Results show that with the decrease of temperature, the cohesion force of crack sealant increases significantly, while the adhesion force changes little. There is a critical temperature at which the cohesion force equals the adhesion force. When the temperature is higher, the adhesion force will be greater than cohesion force, and the cohesion failure will happen more easily. In contrast, the adhesion failure will happen more easily when the temperature is lower than the critical value. Soaking in 25 ℃ water for 24-48 hours will slightly improve the low-temperature tension performance of crack sealant. However, soaking in 60 ℃ water for 24 hours will decrease the failure energy of low-temperature tension and damage the durability of crack sealant.
ISSN:2095-2430
2095-2449
DOI:10.1007/s11709-017-0400-3