Loading…

An iterative method for split inclusion problems without prior knowledge of operator norms

In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the b...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fixed point theory and applications 2017-09, Vol.19 (3), p.2017-2036
Main Authors: Bello Cruz, J. Y., Shehu, Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83
cites cdi_FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83
container_end_page 2036
container_issue 3
container_start_page 2017
container_title Journal of fixed point theory and applications
container_volume 19
creator Bello Cruz, J. Y.
Shehu, Y.
description In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the bounded linear operator norm and strong convergence obtained. The novelty of our algorithm is that the bounded linear operator norm is not given a priori and stepsizes are constructed step by step in a natural way. Our results extend and improve many recent and important results obtained in the literature on the split inclusion problem and its variations.
doi_str_mv 10.1007/s11784-016-0387-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934734664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934734664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FM0ybpcVn8Bwte9OIltE2ydm2TNWld_PamVMSLpxmG33sz8xC6BHoNlIqbCCBkTihwQpkURB6hBXAORIicH__2TJ6isxh3lHKagVig15XD7WBCNbSfBvdmePMaWx9w3HftgFvXdGNsvcP74OvO9BEf2sSMQxq0CXt3_tAZvTXYW-z3k1GaOh_6eI5ObNVFc_FTl-jl7vZ5_UA2T_eP69WGNAz4QIoS6szoRgLLMtCm4QxqKXlR87KpNBW2lI3VknHISis5K2yuhS64llmCJFuiq9k3nfgxmjionR-DSysVlCwXLOc8TxTMVBN8jMFYlR7oq_ClgKopQjVHqFKEaopQTc7ZrImJdVsT_jj_K_oGMdp06A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934734664</pqid></control><display><type>article</type><title>An iterative method for split inclusion problems without prior knowledge of operator norms</title><source>Springer Nature</source><creator>Bello Cruz, J. Y. ; Shehu, Y.</creator><creatorcontrib>Bello Cruz, J. Y. ; Shehu, Y.</creatorcontrib><description>In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the bounded linear operator norm and strong convergence obtained. The novelty of our algorithm is that the bounded linear operator norm is not given a priori and stepsizes are constructed step by step in a natural way. Our results extend and improve many recent and important results obtained in the literature on the split inclusion problem and its variations.</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-016-0387-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Iterative algorithms ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Norms</subject><ispartof>Journal of fixed point theory and applications, 2017-09, Vol.19 (3), p.2017-2036</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science &amp; Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83</citedby><cites>FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83</cites><orcidid>0000-0001-9224-7139 ; 0000-0002-7877-5688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bello Cruz, J. Y.</creatorcontrib><creatorcontrib>Shehu, Y.</creatorcontrib><title>An iterative method for split inclusion problems without prior knowledge of operator norms</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the bounded linear operator norm and strong convergence obtained. The novelty of our algorithm is that the bounded linear operator norm is not given a priori and stepsizes are constructed step by step in a natural way. Our results extend and improve many recent and important results obtained in the literature on the split inclusion problem and its variations.</description><subject>Analysis</subject><subject>Iterative algorithms</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FM0ybpcVn8Bwte9OIltE2ydm2TNWld_PamVMSLpxmG33sz8xC6BHoNlIqbCCBkTihwQpkURB6hBXAORIicH__2TJ6isxh3lHKagVig15XD7WBCNbSfBvdmePMaWx9w3HftgFvXdGNsvcP74OvO9BEf2sSMQxq0CXt3_tAZvTXYW-z3k1GaOh_6eI5ObNVFc_FTl-jl7vZ5_UA2T_eP69WGNAz4QIoS6szoRgLLMtCm4QxqKXlR87KpNBW2lI3VknHISis5K2yuhS64llmCJFuiq9k3nfgxmjionR-DSysVlCwXLOc8TxTMVBN8jMFYlR7oq_ClgKopQjVHqFKEaopQTc7ZrImJdVsT_jj_K_oGMdp06A</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Bello Cruz, J. Y.</creator><creator>Shehu, Y.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9224-7139</orcidid><orcidid>https://orcid.org/0000-0002-7877-5688</orcidid></search><sort><creationdate>20170901</creationdate><title>An iterative method for split inclusion problems without prior knowledge of operator norms</title><author>Bello Cruz, J. Y. ; Shehu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Iterative algorithms</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello Cruz, J. Y.</creatorcontrib><creatorcontrib>Shehu, Y.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello Cruz, J. Y.</au><au>Shehu, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An iterative method for split inclusion problems without prior knowledge of operator norms</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>19</volume><issue>3</issue><spage>2017</spage><epage>2036</epage><pages>2017-2036</pages><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the bounded linear operator norm and strong convergence obtained. The novelty of our algorithm is that the bounded linear operator norm is not given a priori and stepsizes are constructed step by step in a natural way. Our results extend and improve many recent and important results obtained in the literature on the split inclusion problem and its variations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11784-016-0387-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9224-7139</orcidid><orcidid>https://orcid.org/0000-0002-7877-5688</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1661-7738
ispartof Journal of fixed point theory and applications, 2017-09, Vol.19 (3), p.2017-2036
issn 1661-7738
1661-7746
language eng
recordid cdi_proquest_journals_1934734664
source Springer Nature
subjects Analysis
Iterative algorithms
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Norms
title An iterative method for split inclusion problems without prior knowledge of operator norms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20iterative%20method%20for%20split%20inclusion%20problems%20without%20prior%20knowledge%20of%20operator%20norms&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Bello%20Cruz,%20J.%20Y.&rft.date=2017-09-01&rft.volume=19&rft.issue=3&rft.spage=2017&rft.epage=2036&rft.pages=2017-2036&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-016-0387-8&rft_dat=%3Cproquest_cross%3E1934734664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1934734664&rft_id=info:pmid/&rfr_iscdi=true