Loading…
An iterative method for split inclusion problems without prior knowledge of operator norms
In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the b...
Saved in:
Published in: | Journal of fixed point theory and applications 2017-09, Vol.19 (3), p.2017-2036 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83 |
container_end_page | 2036 |
container_issue | 3 |
container_start_page | 2017 |
container_title | Journal of fixed point theory and applications |
container_volume | 19 |
creator | Bello Cruz, J. Y. Shehu, Y. |
description | In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the bounded linear operator norm and strong convergence obtained. The novelty of our algorithm is that the bounded linear operator norm is not given a priori and stepsizes are constructed step by step in a natural way. Our results extend and improve many recent and important results obtained in the literature on the split inclusion problem and its variations. |
doi_str_mv | 10.1007/s11784-016-0387-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1934734664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1934734664</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83</originalsourceid><addsrcrecordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FM0ybpcVn8Bwte9OIltE2ydm2TNWld_PamVMSLpxmG33sz8xC6BHoNlIqbCCBkTihwQpkURB6hBXAORIicH__2TJ6isxh3lHKagVig15XD7WBCNbSfBvdmePMaWx9w3HftgFvXdGNsvcP74OvO9BEf2sSMQxq0CXt3_tAZvTXYW-z3k1GaOh_6eI5ObNVFc_FTl-jl7vZ5_UA2T_eP69WGNAz4QIoS6szoRgLLMtCm4QxqKXlR87KpNBW2lI3VknHISis5K2yuhS64llmCJFuiq9k3nfgxmjionR-DSysVlCwXLOc8TxTMVBN8jMFYlR7oq_ClgKopQjVHqFKEaopQTc7ZrImJdVsT_jj_K_oGMdp06A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1934734664</pqid></control><display><type>article</type><title>An iterative method for split inclusion problems without prior knowledge of operator norms</title><source>Springer Nature</source><creator>Bello Cruz, J. Y. ; Shehu, Y.</creator><creatorcontrib>Bello Cruz, J. Y. ; Shehu, Y.</creatorcontrib><description>In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the bounded linear operator norm and strong convergence obtained. The novelty of our algorithm is that the bounded linear operator norm is not given a priori and stepsizes are constructed step by step in a natural way. Our results extend and improve many recent and important results obtained in the literature on the split inclusion problem and its variations.</description><identifier>ISSN: 1661-7738</identifier><identifier>EISSN: 1661-7746</identifier><identifier>DOI: 10.1007/s11784-016-0387-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Iterative algorithms ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Norms</subject><ispartof>Journal of fixed point theory and applications, 2017-09, Vol.19 (3), p.2017-2036</ispartof><rights>Springer International Publishing 2016</rights><rights>Copyright Springer Science & Business Media 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83</citedby><cites>FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83</cites><orcidid>0000-0001-9224-7139 ; 0000-0002-7877-5688</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Bello Cruz, J. Y.</creatorcontrib><creatorcontrib>Shehu, Y.</creatorcontrib><title>An iterative method for split inclusion problems without prior knowledge of operator norms</title><title>Journal of fixed point theory and applications</title><addtitle>J. Fixed Point Theory Appl</addtitle><description>In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the bounded linear operator norm and strong convergence obtained. The novelty of our algorithm is that the bounded linear operator norm is not given a priori and stepsizes are constructed step by step in a natural way. Our results extend and improve many recent and important results obtained in the literature on the split inclusion problem and its variations.</description><subject>Analysis</subject><subject>Iterative algorithms</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Norms</subject><issn>1661-7738</issn><issn>1661-7746</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp1kE9LxDAQxYMouK5-AG8Bz9FM0ybpcVn8Bwte9OIltE2ydm2TNWld_PamVMSLpxmG33sz8xC6BHoNlIqbCCBkTihwQpkURB6hBXAORIicH__2TJ6isxh3lHKagVig15XD7WBCNbSfBvdmePMaWx9w3HftgFvXdGNsvcP74OvO9BEf2sSMQxq0CXt3_tAZvTXYW-z3k1GaOh_6eI5ObNVFc_FTl-jl7vZ5_UA2T_eP69WGNAz4QIoS6szoRgLLMtCm4QxqKXlR87KpNBW2lI3VknHISis5K2yuhS64llmCJFuiq9k3nfgxmjionR-DSysVlCwXLOc8TxTMVBN8jMFYlR7oq_ClgKopQjVHqFKEaopQTc7ZrImJdVsT_jj_K_oGMdp06A</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Bello Cruz, J. Y.</creator><creator>Shehu, Y.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0001-9224-7139</orcidid><orcidid>https://orcid.org/0000-0002-7877-5688</orcidid></search><sort><creationdate>20170901</creationdate><title>An iterative method for split inclusion problems without prior knowledge of operator norms</title><author>Bello Cruz, J. Y. ; Shehu, Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Analysis</topic><topic>Iterative algorithms</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Norms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bello Cruz, J. Y.</creatorcontrib><creatorcontrib>Shehu, Y.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of fixed point theory and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bello Cruz, J. Y.</au><au>Shehu, Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An iterative method for split inclusion problems without prior knowledge of operator norms</atitle><jtitle>Journal of fixed point theory and applications</jtitle><stitle>J. Fixed Point Theory Appl</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>19</volume><issue>3</issue><spage>2017</spage><epage>2036</epage><pages>2017-2036</pages><issn>1661-7738</issn><eissn>1661-7746</eissn><abstract>In this paper, we study the approximation of solution (assuming existence) for the split inclusion problem in uniformly convex Banach spaces which are also uniformly smooth. We introduce an iterative algorithm in which the stepsizes are selected without the need for any prior information about the bounded linear operator norm and strong convergence obtained. The novelty of our algorithm is that the bounded linear operator norm is not given a priori and stepsizes are constructed step by step in a natural way. Our results extend and improve many recent and important results obtained in the literature on the split inclusion problem and its variations.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s11784-016-0387-8</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-9224-7139</orcidid><orcidid>https://orcid.org/0000-0002-7877-5688</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1661-7738 |
ispartof | Journal of fixed point theory and applications, 2017-09, Vol.19 (3), p.2017-2036 |
issn | 1661-7738 1661-7746 |
language | eng |
recordid | cdi_proquest_journals_1934734664 |
source | Springer Nature |
subjects | Analysis Iterative algorithms Mathematical Methods in Physics Mathematics Mathematics and Statistics Norms |
title | An iterative method for split inclusion problems without prior knowledge of operator norms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A10%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20iterative%20method%20for%20split%20inclusion%20problems%20without%20prior%20knowledge%20of%20operator%20norms&rft.jtitle=Journal%20of%20fixed%20point%20theory%20and%20applications&rft.au=Bello%20Cruz,%20J.%20Y.&rft.date=2017-09-01&rft.volume=19&rft.issue=3&rft.spage=2017&rft.epage=2036&rft.pages=2017-2036&rft.issn=1661-7738&rft.eissn=1661-7746&rft_id=info:doi/10.1007/s11784-016-0387-8&rft_dat=%3Cproquest_cross%3E1934734664%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-591b2edc813221dec631b8865b69cad07f98cfd836129f8635f4d7d56d8265b83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1934734664&rft_id=info:pmid/&rfr_iscdi=true |