Loading…

Laser Zone Melting and microstructure of waveguide coatings obtained on soda‐lime glass

This study presents a Laser Zone Melting method with potential for producing planar waveguides at large scale, based on the surface coupling of two chemically compatible glass layers which exhibit distinct indices of refraction. The method is based on a recent patent, particularly applicable to proc...

Full description

Saved in:
Bibliographic Details
Published in:International journal of applied glass science 2017-09, Vol.8 (3), p.329-336
Main Authors: Rey‐García, Francisco, Flores‐Arias, María T., Estepa, Luis C., Assenmacher, Wilfried, Mader, Werner, Fuente, German F.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3377-82d77a8969939c51410614fd3698bd387ed5d640f929f6810a7ba458a0fab30b3
cites cdi_FETCH-LOGICAL-c3377-82d77a8969939c51410614fd3698bd387ed5d640f929f6810a7ba458a0fab30b3
container_end_page 336
container_issue 3
container_start_page 329
container_title International journal of applied glass science
container_volume 8
creator Rey‐García, Francisco
Flores‐Arias, María T.
Estepa, Luis C.
Assenmacher, Wilfried
Mader, Werner
Fuente, German F.
description This study presents a Laser Zone Melting method with potential for producing planar waveguides at large scale, based on the surface coupling of two chemically compatible glass layers which exhibit distinct indices of refraction. The method is based on a recent patent, particularly applicable to process glass and ceramics with low thermal shock resistance. Glass coatings containing 76.24% by weight PbO are thus here reported, as obtained by this method on commercial soda‐lime planar glass substrates. Their higher indices of refraction (1.58 vs 1.52 for commercial soda‐lime glass) result in attractive waveguiding potential, as demonstrated with measurements using focused light from a He‐Ne laser beam. Scanning and transmission electron microscopy studies reveal excellent integration and compatibility between the observed coatings and substrates, where diffusion in the proximity of the interface was studied by EDS analysis. Crystalline phases have not been found within the coating, or within the substrate, as concluded from the absence of Bragg‐peaks in XRD experiments.
doi_str_mv 10.1111/ijag.12267
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935238490</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935238490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3377-82d77a8969939c51410614fd3698bd387ed5d640f929f6810a7ba458a0fab30b3</originalsourceid><addsrcrecordid>eNp9kLFOwzAQhi0EElXpwhNYYkMK2HES22NVQSkqYoEBFusSO5GrNC52QtWNR-AZeRISghj5l7vhu7v_foTOKbmiva7tBqorGscZP0KTmCQ0orFMjv96kZ2iWQgb0osJkUkxQS9rCMbjV9cY_GDq1jYVhkbjrS28C63virbzBrsS7-HdVJ3VBhcOBi5gl7dgG6Oxa3BwGr4-Pmu7NbiqIYQzdFJCHczst07R8-3N0-IuWj8uV4v5OioY4zwSseYchMykZLJIaUJJRpNSs95erpngRqc6S0gpY1lmghLgOSSpAFJCzkjOpuhi3Lvz7q0zoVUb1_mmP6moZGnMRCJJT12O1PBW8KZUO2-34A-KEjWkp4b01E96PUxHeG9rc_iHVKv7-XKc-QY-W3IR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935238490</pqid></control><display><type>article</type><title>Laser Zone Melting and microstructure of waveguide coatings obtained on soda‐lime glass</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Rey‐García, Francisco ; Flores‐Arias, María T. ; Estepa, Luis C. ; Assenmacher, Wilfried ; Mader, Werner ; Fuente, German F.</creator><creatorcontrib>Rey‐García, Francisco ; Flores‐Arias, María T. ; Estepa, Luis C. ; Assenmacher, Wilfried ; Mader, Werner ; Fuente, German F.</creatorcontrib><description>This study presents a Laser Zone Melting method with potential for producing planar waveguides at large scale, based on the surface coupling of two chemically compatible glass layers which exhibit distinct indices of refraction. The method is based on a recent patent, particularly applicable to process glass and ceramics with low thermal shock resistance. Glass coatings containing 76.24% by weight PbO are thus here reported, as obtained by this method on commercial soda‐lime planar glass substrates. Their higher indices of refraction (1.58 vs 1.52 for commercial soda‐lime glass) result in attractive waveguiding potential, as demonstrated with measurements using focused light from a He‐Ne laser beam. Scanning and transmission electron microscopy studies reveal excellent integration and compatibility between the observed coatings and substrates, where diffusion in the proximity of the interface was studied by EDS analysis. Crystalline phases have not been found within the coating, or within the substrate, as concluded from the absence of Bragg‐peaks in XRD experiments.</description><identifier>ISSN: 2041-1286</identifier><identifier>EISSN: 2041-1294</identifier><identifier>DOI: 10.1111/ijag.12267</identifier><language>eng</language><publisher>Westerville: Wiley Subscription Services, Inc</publisher><subject>Ceramic coatings ; characterization ; coatings ; Diffusion coatings ; electron microscopy ; fabrication ; Glass coatings ; Glass substrates ; Laser beams ; Lasers ; microstructure ; optical ; Planar waveguides ; Refraction ; secondary processing ; Shock resistance ; Soda-lime glass ; structure ; Thermal resistance ; Thermal shock ; Transmission electron microscopy ; waveguides ; Zone melting</subject><ispartof>International journal of applied glass science, 2017-09, Vol.8 (3), p.329-336</ispartof><rights>2017 The American Ceramic Society and Wiley Periodicals, Inc</rights><rights>2017 American Ceramic Society and Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3377-82d77a8969939c51410614fd3698bd387ed5d640f929f6810a7ba458a0fab30b3</citedby><cites>FETCH-LOGICAL-c3377-82d77a8969939c51410614fd3698bd387ed5d640f929f6810a7ba458a0fab30b3</cites><orcidid>0000-0002-0500-1745 ; 0000-0002-3083-9355</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Rey‐García, Francisco</creatorcontrib><creatorcontrib>Flores‐Arias, María T.</creatorcontrib><creatorcontrib>Estepa, Luis C.</creatorcontrib><creatorcontrib>Assenmacher, Wilfried</creatorcontrib><creatorcontrib>Mader, Werner</creatorcontrib><creatorcontrib>Fuente, German F.</creatorcontrib><title>Laser Zone Melting and microstructure of waveguide coatings obtained on soda‐lime glass</title><title>International journal of applied glass science</title><description>This study presents a Laser Zone Melting method with potential for producing planar waveguides at large scale, based on the surface coupling of two chemically compatible glass layers which exhibit distinct indices of refraction. The method is based on a recent patent, particularly applicable to process glass and ceramics with low thermal shock resistance. Glass coatings containing 76.24% by weight PbO are thus here reported, as obtained by this method on commercial soda‐lime planar glass substrates. Their higher indices of refraction (1.58 vs 1.52 for commercial soda‐lime glass) result in attractive waveguiding potential, as demonstrated with measurements using focused light from a He‐Ne laser beam. Scanning and transmission electron microscopy studies reveal excellent integration and compatibility between the observed coatings and substrates, where diffusion in the proximity of the interface was studied by EDS analysis. Crystalline phases have not been found within the coating, or within the substrate, as concluded from the absence of Bragg‐peaks in XRD experiments.</description><subject>Ceramic coatings</subject><subject>characterization</subject><subject>coatings</subject><subject>Diffusion coatings</subject><subject>electron microscopy</subject><subject>fabrication</subject><subject>Glass coatings</subject><subject>Glass substrates</subject><subject>Laser beams</subject><subject>Lasers</subject><subject>microstructure</subject><subject>optical</subject><subject>Planar waveguides</subject><subject>Refraction</subject><subject>secondary processing</subject><subject>Shock resistance</subject><subject>Soda-lime glass</subject><subject>structure</subject><subject>Thermal resistance</subject><subject>Thermal shock</subject><subject>Transmission electron microscopy</subject><subject>waveguides</subject><subject>Zone melting</subject><issn>2041-1286</issn><issn>2041-1294</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNp9kLFOwzAQhi0EElXpwhNYYkMK2HES22NVQSkqYoEBFusSO5GrNC52QtWNR-AZeRISghj5l7vhu7v_foTOKbmiva7tBqorGscZP0KTmCQ0orFMjv96kZ2iWQgb0osJkUkxQS9rCMbjV9cY_GDq1jYVhkbjrS28C63virbzBrsS7-HdVJ3VBhcOBi5gl7dgG6Oxa3BwGr4-Pmu7NbiqIYQzdFJCHczst07R8-3N0-IuWj8uV4v5OioY4zwSseYchMykZLJIaUJJRpNSs95erpngRqc6S0gpY1lmghLgOSSpAFJCzkjOpuhi3Lvz7q0zoVUb1_mmP6moZGnMRCJJT12O1PBW8KZUO2-34A-KEjWkp4b01E96PUxHeG9rc_iHVKv7-XKc-QY-W3IR</recordid><startdate>201709</startdate><enddate>201709</enddate><creator>Rey‐García, Francisco</creator><creator>Flores‐Arias, María T.</creator><creator>Estepa, Luis C.</creator><creator>Assenmacher, Wilfried</creator><creator>Mader, Werner</creator><creator>Fuente, German F.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8FD</scope><scope>JG9</scope><orcidid>https://orcid.org/0000-0002-0500-1745</orcidid><orcidid>https://orcid.org/0000-0002-3083-9355</orcidid></search><sort><creationdate>201709</creationdate><title>Laser Zone Melting and microstructure of waveguide coatings obtained on soda‐lime glass</title><author>Rey‐García, Francisco ; Flores‐Arias, María T. ; Estepa, Luis C. ; Assenmacher, Wilfried ; Mader, Werner ; Fuente, German F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3377-82d77a8969939c51410614fd3698bd387ed5d640f929f6810a7ba458a0fab30b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Ceramic coatings</topic><topic>characterization</topic><topic>coatings</topic><topic>Diffusion coatings</topic><topic>electron microscopy</topic><topic>fabrication</topic><topic>Glass coatings</topic><topic>Glass substrates</topic><topic>Laser beams</topic><topic>Lasers</topic><topic>microstructure</topic><topic>optical</topic><topic>Planar waveguides</topic><topic>Refraction</topic><topic>secondary processing</topic><topic>Shock resistance</topic><topic>Soda-lime glass</topic><topic>structure</topic><topic>Thermal resistance</topic><topic>Thermal shock</topic><topic>Transmission electron microscopy</topic><topic>waveguides</topic><topic>Zone melting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rey‐García, Francisco</creatorcontrib><creatorcontrib>Flores‐Arias, María T.</creatorcontrib><creatorcontrib>Estepa, Luis C.</creatorcontrib><creatorcontrib>Assenmacher, Wilfried</creatorcontrib><creatorcontrib>Mader, Werner</creatorcontrib><creatorcontrib>Fuente, German F.</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><jtitle>International journal of applied glass science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rey‐García, Francisco</au><au>Flores‐Arias, María T.</au><au>Estepa, Luis C.</au><au>Assenmacher, Wilfried</au><au>Mader, Werner</au><au>Fuente, German F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Laser Zone Melting and microstructure of waveguide coatings obtained on soda‐lime glass</atitle><jtitle>International journal of applied glass science</jtitle><date>2017-09</date><risdate>2017</risdate><volume>8</volume><issue>3</issue><spage>329</spage><epage>336</epage><pages>329-336</pages><issn>2041-1286</issn><eissn>2041-1294</eissn><abstract>This study presents a Laser Zone Melting method with potential for producing planar waveguides at large scale, based on the surface coupling of two chemically compatible glass layers which exhibit distinct indices of refraction. The method is based on a recent patent, particularly applicable to process glass and ceramics with low thermal shock resistance. Glass coatings containing 76.24% by weight PbO are thus here reported, as obtained by this method on commercial soda‐lime planar glass substrates. Their higher indices of refraction (1.58 vs 1.52 for commercial soda‐lime glass) result in attractive waveguiding potential, as demonstrated with measurements using focused light from a He‐Ne laser beam. Scanning and transmission electron microscopy studies reveal excellent integration and compatibility between the observed coatings and substrates, where diffusion in the proximity of the interface was studied by EDS analysis. Crystalline phases have not been found within the coating, or within the substrate, as concluded from the absence of Bragg‐peaks in XRD experiments.</abstract><cop>Westerville</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1111/ijag.12267</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0500-1745</orcidid><orcidid>https://orcid.org/0000-0002-3083-9355</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2041-1286
ispartof International journal of applied glass science, 2017-09, Vol.8 (3), p.329-336
issn 2041-1286
2041-1294
language eng
recordid cdi_proquest_journals_1935238490
source Wiley-Blackwell Read & Publish Collection
subjects Ceramic coatings
characterization
coatings
Diffusion coatings
electron microscopy
fabrication
Glass coatings
Glass substrates
Laser beams
Lasers
microstructure
optical
Planar waveguides
Refraction
secondary processing
Shock resistance
Soda-lime glass
structure
Thermal resistance
Thermal shock
Transmission electron microscopy
waveguides
Zone melting
title Laser Zone Melting and microstructure of waveguide coatings obtained on soda‐lime glass
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T08%3A28%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Laser%20Zone%20Melting%20and%20microstructure%20of%20waveguide%20coatings%20obtained%20on%20soda%E2%80%90lime%20glass&rft.jtitle=International%20journal%20of%20applied%20glass%20science&rft.au=Rey%E2%80%90Garc%C3%ADa,%20Francisco&rft.date=2017-09&rft.volume=8&rft.issue=3&rft.spage=329&rft.epage=336&rft.pages=329-336&rft.issn=2041-1286&rft.eissn=2041-1294&rft_id=info:doi/10.1111/ijag.12267&rft_dat=%3Cproquest_cross%3E1935238490%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3377-82d77a8969939c51410614fd3698bd387ed5d640f929f6810a7ba458a0fab30b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1935238490&rft_id=info:pmid/&rfr_iscdi=true