Loading…
Room-temperature superfluidity in a polariton condensate
Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature. Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most...
Saved in:
Published in: | Nature physics 2017-09, Vol.13 (9), p.837-841 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3 |
container_end_page | 841 |
container_issue | 9 |
container_start_page | 837 |
container_title | Nature physics |
container_volume | 13 |
creator | Lerario, Giovanni Fieramosca, Antonio Barachati, Fábio Ballarini, Dario Daskalakis, Konstantinos S. Dominici, Lorenzo De Giorgi, Milena Maier, Stefan A. Gigli, Giuseppe Kéna-Cohen, Stéphane Sanvitto, Daniele |
description | Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature.
Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates
1
. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures
2
. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering. |
doi_str_mv | 10.1038/nphys4147 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935251653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935251653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3</originalsourceid><addsrcrecordid>eNpl0EFLxDAQBeAgCq6rB_9BwZNCNdMkbecoi6vCgiB6LmmTaJc2qUl66L-3UlkET_MOH2_gEXIJ9BYoK-_s8DkFDrw4IisouEgzXsLxIRfslJyFsKeUZzmwFSlfnevTqPtBexlHr5MwztF0Y6vaOCWtTWQyuE76NjqbNM4qbYOM-pycGNkFffF71-R9-_C2eUp3L4_Pm_td2mSYxdRgbQwozVGh1EJho0xRIPJacMpygFoohaLQeYOmzo3gkCFKo3JOkTaGrcnV0jt49zXqEKu9G72dX1aATGQCcsFmdb2oxrsQvDbV4Nte-qkCWv0MUx2Gme3NYsNs7If2fxr_4W8Sz2Xu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935251653</pqid></control><display><type>article</type><title>Room-temperature superfluidity in a polariton condensate</title><source>Nature_系列刊</source><creator>Lerario, Giovanni ; Fieramosca, Antonio ; Barachati, Fábio ; Ballarini, Dario ; Daskalakis, Konstantinos S. ; Dominici, Lorenzo ; De Giorgi, Milena ; Maier, Stefan A. ; Gigli, Giuseppe ; Kéna-Cohen, Stéphane ; Sanvitto, Daniele</creator><creatorcontrib>Lerario, Giovanni ; Fieramosca, Antonio ; Barachati, Fábio ; Ballarini, Dario ; Daskalakis, Konstantinos S. ; Dominici, Lorenzo ; De Giorgi, Milena ; Maier, Stefan A. ; Gigli, Giuseppe ; Kéna-Cohen, Stéphane ; Sanvitto, Daniele</creatorcontrib><description>Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature.
Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates
1
. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures
2
. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4147</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/119/999 ; 639/766/119/2795 ; 639/766/189 ; Atomic ; Bose-Einstein condensates ; Classical and Continuum Physics ; Complex Systems ; Condensation ; Condensed Matter Physics ; Cryogenic temperature ; Excitons ; Fluid dynamics ; Fluid flow ; Helium ; Hydrodynamics ; letter ; Liquid helium ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Particle mass ; Physics ; Polaritons ; Room temperature ; Scattering ; Superconductivity ; Superfluidity ; Temperature ; Theoretical</subject><ispartof>Nature physics, 2017-09, Vol.13 (9), p.837-841</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3</citedby><cites>FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3</cites><orcidid>0000-0002-3996-5219 ; 0000-0002-4712-0072 ; 0000-0001-5065-2750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lerario, Giovanni</creatorcontrib><creatorcontrib>Fieramosca, Antonio</creatorcontrib><creatorcontrib>Barachati, Fábio</creatorcontrib><creatorcontrib>Ballarini, Dario</creatorcontrib><creatorcontrib>Daskalakis, Konstantinos S.</creatorcontrib><creatorcontrib>Dominici, Lorenzo</creatorcontrib><creatorcontrib>De Giorgi, Milena</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Gigli, Giuseppe</creatorcontrib><creatorcontrib>Kéna-Cohen, Stéphane</creatorcontrib><creatorcontrib>Sanvitto, Daniele</creatorcontrib><title>Room-temperature superfluidity in a polariton condensate</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature.
Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates
1
. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures
2
. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.</description><subject>140/125</subject><subject>639/301/119/999</subject><subject>639/766/119/2795</subject><subject>639/766/189</subject><subject>Atomic</subject><subject>Bose-Einstein condensates</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensation</subject><subject>Condensed Matter Physics</subject><subject>Cryogenic temperature</subject><subject>Excitons</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Helium</subject><subject>Hydrodynamics</subject><subject>letter</subject><subject>Liquid helium</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle mass</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Room temperature</subject><subject>Scattering</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Temperature</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpl0EFLxDAQBeAgCq6rB_9BwZNCNdMkbecoi6vCgiB6LmmTaJc2qUl66L-3UlkET_MOH2_gEXIJ9BYoK-_s8DkFDrw4IisouEgzXsLxIRfslJyFsKeUZzmwFSlfnevTqPtBexlHr5MwztF0Y6vaOCWtTWQyuE76NjqbNM4qbYOM-pycGNkFffF71-R9-_C2eUp3L4_Pm_td2mSYxdRgbQwozVGh1EJho0xRIPJacMpygFoohaLQeYOmzo3gkCFKo3JOkTaGrcnV0jt49zXqEKu9G72dX1aATGQCcsFmdb2oxrsQvDbV4Nte-qkCWv0MUx2Gme3NYsNs7If2fxr_4W8Sz2Xu</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Lerario, Giovanni</creator><creator>Fieramosca, Antonio</creator><creator>Barachati, Fábio</creator><creator>Ballarini, Dario</creator><creator>Daskalakis, Konstantinos S.</creator><creator>Dominici, Lorenzo</creator><creator>De Giorgi, Milena</creator><creator>Maier, Stefan A.</creator><creator>Gigli, Giuseppe</creator><creator>Kéna-Cohen, Stéphane</creator><creator>Sanvitto, Daniele</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3996-5219</orcidid><orcidid>https://orcid.org/0000-0002-4712-0072</orcidid><orcidid>https://orcid.org/0000-0001-5065-2750</orcidid></search><sort><creationdate>20170901</creationdate><title>Room-temperature superfluidity in a polariton condensate</title><author>Lerario, Giovanni ; Fieramosca, Antonio ; Barachati, Fábio ; Ballarini, Dario ; Daskalakis, Konstantinos S. ; Dominici, Lorenzo ; De Giorgi, Milena ; Maier, Stefan A. ; Gigli, Giuseppe ; Kéna-Cohen, Stéphane ; Sanvitto, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/125</topic><topic>639/301/119/999</topic><topic>639/766/119/2795</topic><topic>639/766/189</topic><topic>Atomic</topic><topic>Bose-Einstein condensates</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensation</topic><topic>Condensed Matter Physics</topic><topic>Cryogenic temperature</topic><topic>Excitons</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Helium</topic><topic>Hydrodynamics</topic><topic>letter</topic><topic>Liquid helium</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle mass</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Room temperature</topic><topic>Scattering</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Temperature</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerario, Giovanni</creatorcontrib><creatorcontrib>Fieramosca, Antonio</creatorcontrib><creatorcontrib>Barachati, Fábio</creatorcontrib><creatorcontrib>Ballarini, Dario</creatorcontrib><creatorcontrib>Daskalakis, Konstantinos S.</creatorcontrib><creatorcontrib>Dominici, Lorenzo</creatorcontrib><creatorcontrib>De Giorgi, Milena</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Gigli, Giuseppe</creatorcontrib><creatorcontrib>Kéna-Cohen, Stéphane</creatorcontrib><creatorcontrib>Sanvitto, Daniele</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerario, Giovanni</au><au>Fieramosca, Antonio</au><au>Barachati, Fábio</au><au>Ballarini, Dario</au><au>Daskalakis, Konstantinos S.</au><au>Dominici, Lorenzo</au><au>De Giorgi, Milena</au><au>Maier, Stefan A.</au><au>Gigli, Giuseppe</au><au>Kéna-Cohen, Stéphane</au><au>Sanvitto, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature superfluidity in a polariton condensate</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>13</volume><issue>9</issue><spage>837</spage><epage>841</epage><pages>837-841</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature.
Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates
1
. This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures
2
. In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4147</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3996-5219</orcidid><orcidid>https://orcid.org/0000-0002-4712-0072</orcidid><orcidid>https://orcid.org/0000-0001-5065-2750</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1745-2473 |
ispartof | Nature physics, 2017-09, Vol.13 (9), p.837-841 |
issn | 1745-2473 1745-2481 |
language | eng |
recordid | cdi_proquest_journals_1935251653 |
source | Nature_系列刊 |
subjects | 140/125 639/301/119/999 639/766/119/2795 639/766/189 Atomic Bose-Einstein condensates Classical and Continuum Physics Complex Systems Condensation Condensed Matter Physics Cryogenic temperature Excitons Fluid dynamics Fluid flow Helium Hydrodynamics letter Liquid helium Mathematical and Computational Physics Molecular Optical and Plasma Physics Particle mass Physics Polaritons Room temperature Scattering Superconductivity Superfluidity Temperature Theoretical |
title | Room-temperature superfluidity in a polariton condensate |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20superfluidity%20in%20a%20polariton%20condensate&rft.jtitle=Nature%20physics&rft.au=Lerario,%20Giovanni&rft.date=2017-09-01&rft.volume=13&rft.issue=9&rft.spage=837&rft.epage=841&rft.pages=837-841&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4147&rft_dat=%3Cproquest_cross%3E1935251653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1935251653&rft_id=info:pmid/&rfr_iscdi=true |