Loading…

Room-temperature superfluidity in a polariton condensate

Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature. Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most...

Full description

Saved in:
Bibliographic Details
Published in:Nature physics 2017-09, Vol.13 (9), p.837-841
Main Authors: Lerario, Giovanni, Fieramosca, Antonio, Barachati, Fábio, Ballarini, Dario, Daskalakis, Konstantinos S., Dominici, Lorenzo, De Giorgi, Milena, Maier, Stefan A., Gigli, Giuseppe, Kéna-Cohen, Stéphane, Sanvitto, Daniele
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3
cites cdi_FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3
container_end_page 841
container_issue 9
container_start_page 837
container_title Nature physics
container_volume 13
creator Lerario, Giovanni
Fieramosca, Antonio
Barachati, Fábio
Ballarini, Dario
Daskalakis, Konstantinos S.
Dominici, Lorenzo
De Giorgi, Milena
Maier, Stefan A.
Gigli, Giuseppe
Kéna-Cohen, Stéphane
Sanvitto, Daniele
description Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature. Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates 1 . This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures 2 . In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.
doi_str_mv 10.1038/nphys4147
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_1935251653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1935251653</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3</originalsourceid><addsrcrecordid>eNpl0EFLxDAQBeAgCq6rB_9BwZNCNdMkbecoi6vCgiB6LmmTaJc2qUl66L-3UlkET_MOH2_gEXIJ9BYoK-_s8DkFDrw4IisouEgzXsLxIRfslJyFsKeUZzmwFSlfnevTqPtBexlHr5MwztF0Y6vaOCWtTWQyuE76NjqbNM4qbYOM-pycGNkFffF71-R9-_C2eUp3L4_Pm_td2mSYxdRgbQwozVGh1EJho0xRIPJacMpygFoohaLQeYOmzo3gkCFKo3JOkTaGrcnV0jt49zXqEKu9G72dX1aATGQCcsFmdb2oxrsQvDbV4Nte-qkCWv0MUx2Gme3NYsNs7If2fxr_4W8Sz2Xu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1935251653</pqid></control><display><type>article</type><title>Room-temperature superfluidity in a polariton condensate</title><source>Nature_系列刊</source><creator>Lerario, Giovanni ; Fieramosca, Antonio ; Barachati, Fábio ; Ballarini, Dario ; Daskalakis, Konstantinos S. ; Dominici, Lorenzo ; De Giorgi, Milena ; Maier, Stefan A. ; Gigli, Giuseppe ; Kéna-Cohen, Stéphane ; Sanvitto, Daniele</creator><creatorcontrib>Lerario, Giovanni ; Fieramosca, Antonio ; Barachati, Fábio ; Ballarini, Dario ; Daskalakis, Konstantinos S. ; Dominici, Lorenzo ; De Giorgi, Milena ; Maier, Stefan A. ; Gigli, Giuseppe ; Kéna-Cohen, Stéphane ; Sanvitto, Daniele</creatorcontrib><description>Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature. Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates 1 . This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures 2 . In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/nphys4147</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>140/125 ; 639/301/119/999 ; 639/766/119/2795 ; 639/766/189 ; Atomic ; Bose-Einstein condensates ; Classical and Continuum Physics ; Complex Systems ; Condensation ; Condensed Matter Physics ; Cryogenic temperature ; Excitons ; Fluid dynamics ; Fluid flow ; Helium ; Hydrodynamics ; letter ; Liquid helium ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Particle mass ; Physics ; Polaritons ; Room temperature ; Scattering ; Superconductivity ; Superfluidity ; Temperature ; Theoretical</subject><ispartof>Nature physics, 2017-09, Vol.13 (9), p.837-841</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Sep 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3</citedby><cites>FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3</cites><orcidid>0000-0002-3996-5219 ; 0000-0002-4712-0072 ; 0000-0001-5065-2750</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Lerario, Giovanni</creatorcontrib><creatorcontrib>Fieramosca, Antonio</creatorcontrib><creatorcontrib>Barachati, Fábio</creatorcontrib><creatorcontrib>Ballarini, Dario</creatorcontrib><creatorcontrib>Daskalakis, Konstantinos S.</creatorcontrib><creatorcontrib>Dominici, Lorenzo</creatorcontrib><creatorcontrib>De Giorgi, Milena</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Gigli, Giuseppe</creatorcontrib><creatorcontrib>Kéna-Cohen, Stéphane</creatorcontrib><creatorcontrib>Sanvitto, Daniele</creatorcontrib><title>Room-temperature superfluidity in a polariton condensate</title><title>Nature physics</title><addtitle>Nature Phys</addtitle><description>Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature. Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates 1 . This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures 2 . In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.</description><subject>140/125</subject><subject>639/301/119/999</subject><subject>639/766/119/2795</subject><subject>639/766/189</subject><subject>Atomic</subject><subject>Bose-Einstein condensates</subject><subject>Classical and Continuum Physics</subject><subject>Complex Systems</subject><subject>Condensation</subject><subject>Condensed Matter Physics</subject><subject>Cryogenic temperature</subject><subject>Excitons</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Helium</subject><subject>Hydrodynamics</subject><subject>letter</subject><subject>Liquid helium</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle mass</subject><subject>Physics</subject><subject>Polaritons</subject><subject>Room temperature</subject><subject>Scattering</subject><subject>Superconductivity</subject><subject>Superfluidity</subject><subject>Temperature</subject><subject>Theoretical</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpl0EFLxDAQBeAgCq6rB_9BwZNCNdMkbecoi6vCgiB6LmmTaJc2qUl66L-3UlkET_MOH2_gEXIJ9BYoK-_s8DkFDrw4IisouEgzXsLxIRfslJyFsKeUZzmwFSlfnevTqPtBexlHr5MwztF0Y6vaOCWtTWQyuE76NjqbNM4qbYOM-pycGNkFffF71-R9-_C2eUp3L4_Pm_td2mSYxdRgbQwozVGh1EJho0xRIPJacMpygFoohaLQeYOmzo3gkCFKo3JOkTaGrcnV0jt49zXqEKu9G72dX1aATGQCcsFmdb2oxrsQvDbV4Nte-qkCWv0MUx2Gme3NYsNs7If2fxr_4W8Sz2Xu</recordid><startdate>20170901</startdate><enddate>20170901</enddate><creator>Lerario, Giovanni</creator><creator>Fieramosca, Antonio</creator><creator>Barachati, Fábio</creator><creator>Ballarini, Dario</creator><creator>Daskalakis, Konstantinos S.</creator><creator>Dominici, Lorenzo</creator><creator>De Giorgi, Milena</creator><creator>Maier, Stefan A.</creator><creator>Gigli, Giuseppe</creator><creator>Kéna-Cohen, Stéphane</creator><creator>Sanvitto, Daniele</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3996-5219</orcidid><orcidid>https://orcid.org/0000-0002-4712-0072</orcidid><orcidid>https://orcid.org/0000-0001-5065-2750</orcidid></search><sort><creationdate>20170901</creationdate><title>Room-temperature superfluidity in a polariton condensate</title><author>Lerario, Giovanni ; Fieramosca, Antonio ; Barachati, Fábio ; Ballarini, Dario ; Daskalakis, Konstantinos S. ; Dominici, Lorenzo ; De Giorgi, Milena ; Maier, Stefan A. ; Gigli, Giuseppe ; Kéna-Cohen, Stéphane ; Sanvitto, Daniele</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>140/125</topic><topic>639/301/119/999</topic><topic>639/766/119/2795</topic><topic>639/766/189</topic><topic>Atomic</topic><topic>Bose-Einstein condensates</topic><topic>Classical and Continuum Physics</topic><topic>Complex Systems</topic><topic>Condensation</topic><topic>Condensed Matter Physics</topic><topic>Cryogenic temperature</topic><topic>Excitons</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Helium</topic><topic>Hydrodynamics</topic><topic>letter</topic><topic>Liquid helium</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle mass</topic><topic>Physics</topic><topic>Polaritons</topic><topic>Room temperature</topic><topic>Scattering</topic><topic>Superconductivity</topic><topic>Superfluidity</topic><topic>Temperature</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lerario, Giovanni</creatorcontrib><creatorcontrib>Fieramosca, Antonio</creatorcontrib><creatorcontrib>Barachati, Fábio</creatorcontrib><creatorcontrib>Ballarini, Dario</creatorcontrib><creatorcontrib>Daskalakis, Konstantinos S.</creatorcontrib><creatorcontrib>Dominici, Lorenzo</creatorcontrib><creatorcontrib>De Giorgi, Milena</creatorcontrib><creatorcontrib>Maier, Stefan A.</creatorcontrib><creatorcontrib>Gigli, Giuseppe</creatorcontrib><creatorcontrib>Kéna-Cohen, Stéphane</creatorcontrib><creatorcontrib>Sanvitto, Daniele</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Science Journals</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lerario, Giovanni</au><au>Fieramosca, Antonio</au><au>Barachati, Fábio</au><au>Ballarini, Dario</au><au>Daskalakis, Konstantinos S.</au><au>Dominici, Lorenzo</au><au>De Giorgi, Milena</au><au>Maier, Stefan A.</au><au>Gigli, Giuseppe</au><au>Kéna-Cohen, Stéphane</au><au>Sanvitto, Daniele</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Room-temperature superfluidity in a polariton condensate</atitle><jtitle>Nature physics</jtitle><stitle>Nature Phys</stitle><date>2017-09-01</date><risdate>2017</risdate><volume>13</volume><issue>9</issue><spage>837</spage><epage>841</epage><pages>837-841</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Superfluidity is a phenomenon usually restricted to cryogenic temperatures, but organic microcavities provide the conditions for a superfluid flow of polaritons at room temperature. Superfluidity—the suppression of scattering in a quantum fluid at velocities below a critical value—is one of the most striking manifestations of the collective behaviour typical of Bose–Einstein condensates 1 . This phenomenon, akin to superconductivity in metals, has until now been observed only at prohibitively low cryogenic temperatures. For atoms, this limit is imposed by the small thermal de Broglie wavelength, which is inversely related to the particle mass. Even in the case of ultralight quasiparticles such as exciton-polaritons, superfluidity has been demonstrated only at liquid helium temperatures 2 . In this case, the limit is not imposed by the mass, but instead by the small binding energy of Wannier–Mott excitons, which sets the upper temperature limit. Here we demonstrate a transition from supersonic to superfluid flow in a polariton condensate under ambient conditions. This is achieved by using an organic microcavity supporting stable Frenkel exciton-polaritons at room temperature. This result paves the way not only for tabletop studies of quantum hydrodynamics, but also for room-temperature polariton devices that can be robustly protected from scattering.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/nphys4147</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0002-3996-5219</orcidid><orcidid>https://orcid.org/0000-0002-4712-0072</orcidid><orcidid>https://orcid.org/0000-0001-5065-2750</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2017-09, Vol.13 (9), p.837-841
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_1935251653
source Nature_系列刊
subjects 140/125
639/301/119/999
639/766/119/2795
639/766/189
Atomic
Bose-Einstein condensates
Classical and Continuum Physics
Complex Systems
Condensation
Condensed Matter Physics
Cryogenic temperature
Excitons
Fluid dynamics
Fluid flow
Helium
Hydrodynamics
letter
Liquid helium
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Particle mass
Physics
Polaritons
Room temperature
Scattering
Superconductivity
Superfluidity
Temperature
Theoretical
title Room-temperature superfluidity in a polariton condensate
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Room-temperature%20superfluidity%20in%20a%20polariton%20condensate&rft.jtitle=Nature%20physics&rft.au=Lerario,%20Giovanni&rft.date=2017-09-01&rft.volume=13&rft.issue=9&rft.spage=837&rft.epage=841&rft.pages=837-841&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/nphys4147&rft_dat=%3Cproquest_cross%3E1935251653%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-f9bff1de49d9ae5d9cdf77994b5403611b5dd957e6c9fb6f541299afd64090cf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1935251653&rft_id=info:pmid/&rfr_iscdi=true